.~ RD-A178 648 AN IIPLEHENTRTION OF LANGUAGE ANALYZER FOR THE VERY
HIGH SPEED INTE! (U> AIR FORCE INST OF TECH
HRIGHT-PATTE RSON RFB OH SCHOOL OF ENGI..
UNCLASSIFIED D J FRAVENFELDER DEC 86 AFIT/GCE/MA/86D-1 F/G 9/2







\

© 7. OTE FILE copy 0,

AD-A178 648

R

(AN IMPLEMENTATION OF A LANGUAGE ANALYZER
FOR THE VERY HIGH SPEED INTEGRATED CIRCIT
HARDWARE DESCRIPTION L ANGUAGE

THESIS

Deborah J. Frauenfelder -
Captain, USAF

DTIC
ELECTE
APR O 3 1987

_ AFIT/GCE/MA/BED-1 .

A
Appeoved fox public releass
Distribution Unlimites

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

DISTRIBUTION STATEMENT J v

Wright-Patterson Air Force Base, Ohio




AFIT/GCE/MA/86

DTIC

ELECTE
APR 0 3 1887

AN IMPLEMENTATION OF A LANGUAGE ANALYZER
FOR THE VERY HIGH SPEED INTEGRATED CIRCUIT
HARDWARE DESCRIPTION LANGUAGE
THESIS
Deborah J. Frauenfelder -

Captain, USAF

AFI1T/GCE/MA/860D-1

Approved for pubiic release; distribution unlimited.

Sy N.:-\- MOARS TATRIR \:’$- ":‘ oy \ X \ v ‘! .



AF1T/GCE/MA/86D-1

AN IMPLEMENTATION OF A LANGUAGE ANALYZER
FOR THE VERY HIGH SPEED INTEGRATED CIRCUIT
HARDWARE DESCRIPTION LANGUAGE

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Computer Engineering

Deborah J. Frauenfelder, B.S.C.S.
Captain, USAF

December 1986

Approved for public release; distribution unlimited.




Acknowiedgments

Thesis research is normally an individual effort; therefore, | was
privileged to have worked with a team of researchers whose goal was
to create the prototype AFIT VHDL Environment. To my fellow
researchers and comrades in arms, | would like to express my deepest
appreciation for all assistance rendered during the course of this
project. A special thank-you is extended to my thesis readers, Lt Col
Harold Carter and Capt James Howatt, for their editorial comments,
and to my advisor, Lt Col Gross, for his guidance throughout this
project.

Deborah J. Frauenfelder

This report is for open literature. Distri-

butior Statement A is correct. )
Per Lt. Col. Richard R. Gross, AFIT/ENG

Accesion For \
NTIS CRA&I YA
8]
0

DTIC TAB
Unannounced
Justification

T .

o
° BY e
Distribution /

SOPY
INSPECTED

6

Availability Codes
e ae mie s e e E——

) Avuii a~d/or

Dist Speciai

A-1

P, QAR HONES ARG WG AL TORLGEL TN, OV, 06 B4 201N 01 G0t LG EO R Tt



e

‘ TABLE OF CONTENTS
Page
Acknowledgments iv
List of Figures vii
List of Tables : ix )
Abstract . X '
I.  Introduction............ e, remmsessesssamteesssastimeens 1.1
Statement of the Problem 1.1
Background ... evensessssassaassaeseseenasss s seaaesse 1.1
Scope 1.5
Research Approach 1.7
Maximum Expected Gain... 1.10
Sequence of the Presentation 1.11
. Survey of Previous ReSEaNCh..............eeccmmsmmerssssssssssesseeens 21
Overview ............... g ’1,
6 v%wm Description Languages (VHDL).............. 2.3
A Design Data Structure (DDS) 26
SUMMANY.......c..coooumrerrameescemsenmsssesssssessesessssssssssssssssssssssassessssssmssssssnns 212
HI. System Design.........mrccmmmnccsssemmmeecennsssnne 3.1
Overview............c..... 3.1
System Requirements . 3.1
System OrganiZation..............c.ccececrecerermmmnssesessasresssrssasnnns 3.4
Incremental System Implementation 3.10
Intermediate FOrML............occeccrimcnneecrnnseccremnecnens 3.14
INIMIBLY ....oorcemmssrcummassnssssensarsssmssasssessssnsessssssssasssssssssssssasssssmsssssnnns 3.19
V. Detailed DESIGN........ccccerccrinninnensensesssssssmsssssmssassessssssssesssessen 41
OVEIVIBW...........coooccreeemesrersssssssssessassssssssssssssssssssssssssssssssesseness 4] \
Basic Methodology..............cmemmsnseeessnnnsesssenssssssessssees 42 .
DESIGN WOMK.............cocoicrrineenmimcresennesscesseesmsssnnsssssssssssssnnesneees 44
Major Design Decisions..................cocccmmreccreenenerree. 412
Language Analyzer Detailed Design ......................................... 3. % '.15
V. ANBIYSIS. ..o sssssss s sssssss s ses s e 5.1 '
OVEIVIBW..........oocercereceeeeessssannsssssssses s ssssssssssssssssssasssssssssessssssssneee 5.1 |
Test ReQUIreMENtS................oooviverecnerre e seseseeaseesessesenens S.1 "
'@ Method of Evaluation................cmenncencenccreseens 5.4 ;
v

------

. *, 'y - (P eyt Y -~ . . . - 8 . 3 )
S TR R LR S, N0 N A O QG X L SN B R A AN N 200, 1, (D AL 0N MO0 U AT A Ml d A



@
§

Evaluation of the VHDL Analyzer................oocconvcrrmmsnrssnee. 9.7
SUMMATNY..........nrnmmnnnsssemmassesssssssssanssssssismsses S.14
ViI. Conclusions 6.1
Principal Conclusions 6.1
Suggestions for Future Work 6.5
SUMMAPY..........ccoomureeccermmmnssessesesssasessesssassssesesssmsssssssssssassesass 6.11
Appendix A: Deviations from the VHDL Language Reference
Manual ... Al
Appendix B: VHDL Intermediate Access (VIA) B.1
Overview B.1
Overview of the VIA File Structure B.1
The C t Structure B.2
The VIATABLE Structure 8.4
Detailed Record Definitions. B.7
Appendix C: Example Test Data. C.i
Bibliography BIB.1

® Vita | VITA 1




® List of Figures

Figure Page
1.1 AFIT VHDL Environment 1.3
1.2 Pre-Prototype Syntax Analyzer Design 1.4
2.1  VHDL Design Structure 25
2.2 Directed Acyclic Graph . 2.7
2.3 Hierarchical Tree of aModel 28
2.4 Inter-Subspace Relationships................cocrsirssrricisssnescasscrmsenne 29
25 Dataflow's One-to-Many RelationShip............cccconerreccsnrremecsccrsmmmrssssnnseeess 210
26 INLEr-MOGR] BINAING.....c.ooocrcrrcsrrscesssssssrssrns s ssssssssssssss s 2.11
3.1  VHDL Language ANAlyzer DeSIQN............cccoowcwccmcummmmmmnnenecesssssessmnaesseceenses 3.6
3.2 Parser GeNEration................cmmmmcemmscrmsmssssesssssasmsasssssseses . 37
‘ 3.3 Lexical Analyzer Generation................mmmrssmceseees S 3.8
3.4 SYMDO] TADIE..........ooecrrrrnenctserinssssasssensssssasssesecssasesssessassssssonessasesssssssanss 39
3.5  VHDL Represented In VIA.......ciccnecmmmmssessessssssssssesmsssssssssssssss 3.18
41 Subset | -- the Design Entity Shells............niiecreces 46
42 The VHOL Configuration in VIA ... ccccticcresseenncrnsens 48
43 AnExample Parser Production for YACC............oomrnnnrensnnenns 411
44 High-level Dataflow Diagram of the Language Analyzer.................. 416
45  Attribute ADStract Data TYpe..............rrenecsessnresesssserenssessasseens 420
46  GroUD ADSEIACt DBLE TYPE......oocoocoovceoerosreoereseesmssessessessssess e e 421
S.1  Procedure TeSt CASE.............o o ionnernesissseesesessssmsssssssssssansssssssssanss 5.8
B.1  VIARecord Hierarchy..............um. cessenssssns et serassaseasasesaes B.3
B.2  VIATABLE SEIUCLURE.............coomrrercerrnesssssnsnssssssssssssssssassssssesssssannnnsssssssnnns B.S
B.3  COMPONGNEL RECONU............ooorvrmmnernnnerennnnnssnssssessssssessssssssssssssssssssssssssssssens ssecsssis 8.8
@ B.4 dataflow_lnK ReCONd..............cemer vt sassessone B.11
vii

1
L2 SN/ ) Sy L. ; . % 2% T ™ T W e e ™ - N e e e e a Nt e LR R e e T LN e e
‘t'( R * R0 3O A G PN PR A K MLk i e, SR P G 3 W) ENRT T

SR T

- ——

- .-

s s



'ﬁ,

b - ) ~- N
\‘:‘-'.\ DKW TR

Figure
BS
B.6
B.7
B.8
B9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B8.23
C.1
C2
C3
c4
CS
(o

>
‘\

Page

datarlow_model RECOR...............cccrmrrnnerressessesecssssermssssssasesesssssssansases B.13
dataf 10W_NEL RECONd...............cooviverrresnrerrinsnsrnrissssessasssssasmsssssessssssssassseses B.16
dataflOW_PIN RECONd............ooooereeeceneccsenssenssssssssassssssssssassasenss B.18
operational_binding RECONd...............ccoerrerensressscressssssessossessscsssanesees 8.20
PACKAGE RECONM..........cuivrimansiccssrnnssninesnasnseseccsmmssssssssesssassssssssssssssessssasess B.22
SINGIE_CAMTIEr RECON...........ccoommirriveucereessiessssesssisassssesessassssasssseasssssssssses B.24
SING1E_MOAUIE RECONM.............ccouemmeerieuneneermsesssecssnemsasssessssmsssesseressasssesesnans B.26
SINGIE_NOAE RECONM.............cerroeerieerenerccrimeicessesssonsesesserssassssessssasnesssesiasens B.28
SINGIE_POINE RECONA..........ccoouucrreenrerrisserinsnsseersssssiessssssssssasssssssssssssssessssanns B.30
SINGIE_TBNGE RECONM.............cconorrrtuneannesessecnsastseasssmssssssesesssesssssssssssessssssssanes B.33
single_value Record............. N . B.36
SErUCtUral_link RECONd.............cocoorcesecrrenrsrnsrsessesasssnsnessssasssessssssansns B.38
SErUCtUFal_MOdel RECOMM.......... s S B.4I
structural_net Record....... eeresesssasaesse R s Ras e st E ARt B.44
SPUCLUPAL_DIN RECONG................ooevereeeeeereesenseenerasssessesensssssemsssisssesenns B.46
EAMUNG_HIK RECONG........oceree et sso et B.48
timINg_model RECONd...............creeermiessienrccsecrvnneeissnssseesessssssis e B.S0
UNARTINED RECON............evercceririssise s s ssssessssssasssssssssssssssens B.53
VIAtAD1@ RECONM...........oooooeccveeieecerriicsrrccsissssnnrssssesssssssssssssa s sssss s ssssns B.55
TESE CASE ...t sssssassssssssensssssasssssssssssssssssessssssssssssssesoees C2

TSL CASC ...t ssssssts s sssesssassssssassssas s s saes C3

TSt CASE ...ttt ssssssssss s sssssssssserasssssssmsesesssaesssssanone c4

TESL CASE 4.ttt sssssssssssi s srisss st ssss s sas s ssin CS

TESE CASC S......ccervreeeerreccrerectiirssnenn s ssssssssesese s ssssss s ssssssnsn s C6

TOSE CASE B..........cooerrres st c7

v

»
VTN AN 1S W8 I T X S SRS T YOS SRS NN e e LS oA
W G BT, T T FL c_ -.x WP RN, \'. AN "\ ™, % € \ ot "

R I g 20

. PN



List of Tables

Table Page

3.1 VHDL Subsets and Capabilities..........cccooooemeeeeeeeseseessssssssssessnsens 3.15

S.1 Performance Test Raw Data......................... ) . 9.1

S.2 Execution Time Means and Standard Deviations.............ccooovvvreerenece.. S5.12
ix

' .'f W .U\“ ' ANy WS b N,

N P m yrme - ’ - v e g P Rt AP A NP s " " " s y "
‘ , F y ' P -~ ' ) VP a®ad® N, N . ) L) .
i y_l”l l‘h‘ AN v ( p ) ’.v SV VA e “ o) > .."'» ‘ ) ( z



AFIT/GCE/MA/86D-1

P e P e

oy
- ;
- Abstract [
- :
This thesis describes the incremental approach used to develop the first v
known C-based, UNIX-supported translator/analyzer for the Very High Speed ;?L
Integrated Circuit (VHSIC) Hardware Description Language (VHDL). This f‘
research consisted of defining a VHDL Intermediate Access (VIA) format as a s
translation target, dividing VHDL into manageable segments, describing 5
VHDL-to-VIA relationships, designing software modules to create those r
relationships, and evaluating the functional and performance characteristics ol
of the analyzer. The intermediate form, VIA, was based upon the Design Data ‘
Structure (DDS) developed by Alice Parker and David Knapp. ' :
‘ Three of the nine VHDL language subsets identified were implemented in i
the language analyzer. In increments, these subsets were manuatly transiated
into specific examples of an enhanced version of DDS represented in a pile ‘
file format (VIA). These examples were then used as specifications for .
designing program modules to automatically translate VHDL code into VIA \
After the program modules were written, these same examples were used as *

formal functional test specifications. .

N | $

’

Ky

.'.

4

-

v

»

g

. l‘ -
AN

»

X "

[ }

r::

W 37, TR VAL 3% 3 10 0 DLW 3R SR SN T TP T 6 TP S W T Y A N NS L S S R S VL N S S O S . $‘

ALY 20PN 260G I N A AT M N A NI A AL O O N G 2 A RN SN AN & v



L] AT J

L] - L] - L4
O "- ,l\., .

i. Introduction

Statement of the Problem

Key members of the microelectronics design community, such as the
Institute of Electrical and Electronics Engineers (1EEE) and the Air Force, are
on the verge of approving a standard hardware description l1anguage, called
Very High Speed Integrated Circuit (VHSIC) Hardware Description Language
(VHDL). However, this approval is based solely on a theoretical evaluation of
the 1anguage, rather than on practical experience gained from integrating
VHDL with automated VHSIC design tools.

Background

The Air Force recently forecasted 39 technological goals for the next 25
years. One of the 39 goals is unified life cycle engineering, a "unified,
automated design methodology treating performance, manufacturability, and
supportability concurrently in computer and design systems™ (Kulp, 1986).
One step toward the realization of unified life cycle engineering is a
hardware description language, such as VHDL, which can both model hardware
performance and document hardware design. A hardware description language
is a computer language which is used by engineers to describe and to model
very high speed integrated circuits and other systems.

Although many hardware description languages exist for describing

VHSIC systems, no 1anguage has been accepted as an industry-wide standard.

LA

N NPT TRV S TP AP St S AN



@ Recognizing this fact, the IEEE selected VHDL Version 7.2 as the basis for a
draft hardware description language standard. VHDL contains rules for
specifying system requirements, system designs, system components,
component behaviors, and multiple component interactions.

IRELAL |-

Some revisions to the VHDL language were anticipated before the
international community approved the standard (AFWAL, 1986). The potential

areas for revision were identified and evaluated during 1986. The draft (EEE

LR E |or

VHDL Reference Manual (CAD Language Systems, 1986) was released in June
1986. The proposed draft standard was reviewed by the IEEE community
during the later half of 1986, and the final standard is scheduled for release
in early 1987 (AFWAL, 1986).

|"f;.”-"?_"f—i

To gain the experience with VHDL needed to refine the standard prior to

adoption, it seemed necessary to provide the Air Force with some VHDL

- v

s a5

support tools prior to the delivery of the official contracted VHDL
environment. Consequently, in 1985, an Air Force Institute of Technology
(AFIT) faculty member proposed that a prototype VHOL support environment
be developed by AFIT students. The proposed AFIT VHDL Environment (AVE),

TONAN S v

depicted in Figure 1.1, consists of six high level components: a VHDL

ot

analyzer, a VHDL code checker, a software simulator, a simulator generator, a

hardware simulator engine, and a VHDL microcode compiler (Carter, 1985).

The VHOL analyzer is a computer program which translates VHDL
programs describing circuits into an intermediate form which is eventually

el processed by other tools in the environment. A pre-prototype VHDL analyzer

-
............
.........



VHDL
Analyser

VHDL Micro
Coda
Code Compiler
Checker

Simuiator Engine

(see Figure 1.2) was

Figure 1.1: AFIT VHDL Environment.

developed by the author for a class project. This

pre-prototype analyzer successfully recognized the syntax of the entire VHDL

language.

A code checker is a computer program which analyzes the VHDL program

to determine logic errors, circuit timing errors, and potential optimization

areas. The VHDL analyzer initiates the VHDL code checker when a user

requests the action.

o
I AL N

PSR

KR
XSG

[RAS




main ;

symbol tabie parser error handler v

Figure 1.2 Pre-Prototype Syntax Analyzer Design Y,

:

e A software simulator is a computer program which models the behavior i
of the circuit. The circuit represented in the intermediate files describes the .

signals, the data, and the control sequencing used by the software simulator. 'f

A simulator generator is a computer program which controis the "
operation of a different computer (the hardware simulation engine) based :
upon information contained in the intermediate files. The simulator -
generator and the software simulator conceptually perform the same control N
tasks, but the simulator generétor also controls the parallel tasking of the R
hardware simulation engine.

A hardware simulator engine is a computer hardware system designed to
model the behavior of circuits. The hardware simulator engine provides the
same information the software simulator provides. The hardware simulator

-

1.4 a

i YN ot %

t, ‘ 19 P v j Y
AETURONORUR R, ] S TR A B B B S



a engine is expected to model the circuit up to an order of magnitude faster
than the software simulator.

A microcode compiler is a computer program which reads procedure
inputs and the intermediate code produced by the VHDL analyzer to generate
tables of information in the form of computer code. This computer code
generates the microcode for the computer described by the VHDL code.

Scope

The primary goal of this research endeavor was to implement a prototype
VHOL language analyzer which provided the functional capabilities necessary
g to perform as a front-end processor for a multiple tool design environment.
To achieve this goal, the following subtasks were established:

1. Select an interface structure for the VHDL Design Environment.

2. ldentify the VHDL constructs to implement.
Identify the logical relationship between the VHDL constructs and the
interface structure.

4 Design modules to generate the intermediate structure.
Create the package STANDARD specified in the VHDL Language Reference
Manual (Intermetrics, 1985a: B-7 to B-9).

6. Test and evaluate the language analyzer.

This research was considered to be finished when:

f. the analyzer's functional capabilities and requirements were defined;

di?-‘ 2. the language analyzer was designed, coded, and tested;
1.5
. o, ' " X L l "' "."*' N J' . ‘ "h‘*‘ L WH < C |' \‘ < ll ‘ .' \’\ - ) .-‘ !l \ \ Y‘ Dl ) v y\-\'! . [y

A e e

- - - -

"y "9 s B3 _F_V

a
- g



@ 3. the functional requirements were compared to the language analyzer's
performance; and
4 the results were reported in this thesis.

Certain less important areas were not addressed by this study because of
resource constraints:
1. Optimization of the intermediate structure generated by the language
analyzer was excluded from the scope of the research because the VHDL
language will change next year. As stated earlier, in 1986 the IEEE was
refining VHDL to become the industry standard hardware description language.
During the standardization process, the IEEE changed VHDL's grammar. The
constructs of the language subject to change were not known at the start of
6 this research endeavor. After the language has been approved by the IEEE, the
VHOL language analyzer should be modified to reflect the changes. Because of
these facts, research time considered for allocation to optimization would
best be used elsewhere.

2. Creation of a design library and a design library manager, with the
exception of the STANDARD package mentioned earlier, was excluded from the
scope of the research due to the complexity of the task. The package
STANDARD is essential for the AFIT VHDL Environment because VHDL
semantics assume the existence of the package STANDARD. Even in this case,
the design library manager function can be provided by the UNIX support

environment.
h‘.‘:‘,
[ TR R P vy » [ PACR Y 2% P : . 3 - 5 b X
T Qo AR (WAL, AL e v BDEHLHTTA 8¢ 2+, . \'.."(( ,w’ S oY, T o AN O



Research Approach

The following approach was used to address research subtasks in this
project.

Selecting a structure for the intermediate files is the process of analyzing
the VHDL language to determine a method for representing the content of a
VHDL source program. Two candidate methods are Intermediate VHDL Access
Notation (1VAN) as presented in the VHDL Design Library Specification (Texas
Instruments, 1984.3-1 to 3-21) and Design Data Structure (DDS) as presented
by Knapp and Parker of the University of Southern California (Knapp and
Parker, 1984:9-27). Both methods are well documented, and either would
have enabled the project to continue with minimum design time. An
alternative to using an existing structure was to design a structure explicitly
for VHOL. This alternative would have required at least six months of
research time. The added research time would have delayed the production of
the intermediate files, which were required for the parallel development
projects. Therefore, one of the documented structures was selected based on
a comparison of their respective capabilities to represent the semantic
content of VHDL. Selecting the structure which best represents VHDL
semantics insured the tools under development had access to efficient circuit
descriptions.

2. |dentify the VHOL constructs to implement. Identifying the VHDL

constructs to implement is the process of classifying the language rules into



ol
"-*\.
>

six or more subsets of rules. To expedite implementation of some capability
for the parallel projects to use, the rule subsets were ranked in the order of
expected implementation complexity. As each rule set was added to the
analyzer, the analyzer's capabilities expanded. Computer code was designed
and tested to validate the expanded capabilities. The completed analyzer will
eventually contain all the rule subsets.

An alternative to creating subsets for the language would have been to
design each phase of the analyzer separately. For example, the lexical
analyzer would have been completely designed and tested, then, the parser
would have been designed and tested. This alternative method would mean the
intermediate files could have been generated only after the entire project
was complete. Traditionally, the alternative method has been used, but in
this case four parallel development projects (see Figure 1.1) required the
intermediate files. The method of selecting subsets of the VHDL language
allowed earlier access to the intermediate files, enabling the parallel
projects to progress.

3. identify the logical relationship between the VHDL constructs and the
interface structure. Identifying the logical relationship between the VHDL
constructs and the interface structure is the process of determining how the
semantics of the language are explicitly represented in the intermediate
form. The language subsets (identified in the preceding task) were
iteratively decomposed to provide examples of VHOL source code and the
intermediate form. The examples served as a guide for designing the modules
in step 4; they formally specified the interface for the parallel projects; and,

1.8




they formed the test cases used for validation in step 6.

An alternative to the iterative approach was to decompose the entire
language before preceding to the next step. The approach would reduce the
risk of errors due to an incomplete understanding of the complex logical
relationships, but in this case four parallel development projects (see Figure
1.1) required the intermediate files. The iterative method allowed earlier
access to the intermediate files, enabling the parallel projects to progress.

4 Design modules to generate the intermediate files Designing modules to

generate the intermediate structure is an iterative process of determining
the actions required for generating the intermediate files. The example code
created in step 4 was used to create tables and narrative descriptions
specifying the required actions. Once the actions were identified, programs
were written to simulate the actions. The design process is a fundamental
step for any software development project. In this case, the design process
not only documented the detailed design, but also, formed the basis for the
maintenance manual.

Manual (Iintermetrics, 1985a: B-7 to B-9 ). Creating the predefined
attributes, types, and subtypes of the package STAM)ARO is the process of
writing VHDL source code to build the primitive environment for VHDL as
defined in the language reference manual (LRM). This environment was not
essential for the creation of the 1anguage analyzer, but it was essential for
the AFIT VHOL Environment. Without the primitive types and attributes

1.9

ORI . . P P AT R, - . - o P AP A B L2 2" "2 2" 4
PROS ¢ ] ,7 .‘- ‘ L‘ l-( "".( (l, Ilff v"( L0 *, D ffl "



specified in the LRM, each person who wrote a VHDL program would need to
write the code for the primitive types and attributes he used. Additionally,
the semantics of the VHOL 1anguage assume the existence of the package
STANDARD. Step 6 used the VHDL source code for the package STANDARD.

6. Iest and evalyate the language analyzer. Testing and evaluating the
language analyzer is the process of executing the VHDL l1anguage analyzer,

checking the results against the predicted results, verifying the expected
output, and determining run time performance. All VHDL source code written
for steps 3 and 5 was applied as test data. Additionally, VHDL written by
others, such as the AFIT VHDL Beta Test Team and AFIT's hardware
architecture classes, was applied as test data. The raw data was gathered
from the each test and statistically analyzed to determine the run time
performance of the language analyzer. The data collection techniques and the
specific metrics used in analyzing the performance are specified in Chapter S.

Maximum Expected 6ain

The maximum expected gain for this research endeavor was the
development of the first known UNIX-resident VHDL language analyzer which
successfully recognized the entire VHOL language and produced a useful
intermediate form. The language analyzer was targeted to emphasize
function, that is, to handle the entire language with satisfactory performance ;
as a secondary goal. Satisfactory performance was defined as averaging less Y
than 3 minutes CPU time for analyzing a single 1000-word VHOL source code
file.

1.10




Sequence of the Presentation.

This thesis contains six chapters with three supporting appendices.
After the introduction in Chapter 1, Chapter 2 presents a survey of previous
research on languages, on VHOL, and on an intermediate 1anguage abstraction
called Design Data Structure (DDS). Chapter 3 describes the AFIT VHDL
Language Analyzer's system design, specifies the system requirements, and
describes the intermediate form selected. In turn, Chapter 4 describes the
detailed design of seven incremental designs which as a composite create the
language analyzer. The test methodology and analytical resuits are presented
in Chapter 5. Then Chapter 6 summarizes the conclusions and recommends
future research endeavors.

Three appendices were written to support the body of this thesis.
Appendix A contains a list of VHDL l1anguage requirements which were
specified in the VHOL Language Reference Manual (Intermetrics, 1985a), but
were not implemented in the prototype language analyzer. Appendix B
contains the complete VHDL Intermediate Access (VIA) format specification.
Appendix C contains selected examples of test data which were used to
validate the prototype language analyzer.




Al

B I

\ \' ‘ ‘ » N\,

R

Ve,

I1. Survey of Previous Research

OVERVIEW.

The development of electronic systems is a complicated process which
encompasses many diverse tasks. These tasks inciude, but are not limited to,
specifying system performance requirements; specifying system functional
requirements; functional design; logic design; simulation and modeling; mask
placement and routing; fabrication; and testing. As with any research
endeavor, the development of electronic systems is inevitably subject to
change (Dewey and Gadient, 1986: 12) due to either fluctuating user
requirements or advances in technology. Regardless of the cause, the effect is
the same -- increased cost and increased time expenditures.

In recent years, to reduce cost and time (Dewey and Gadient, 1986: 13),
many hours of research have been dedicated to the design and development of
computer-aided design environments specifically tailored for electronic
system design. From these research hours, many Hardware Design Languages
(HDL's), such as VHDL, have emerged. To support these HDL's, 1anguage
environments, language analyzers, and intermediate language representations
have evolved. In the following sections, after a general background survey on
languages, VHOL is briefly described, and an intermediate language
abstraction, called Design Data Structure (DDS), is discussed.

2.1

Y0
My '-\

LS SRR SIS R ARG R LG Yy O -.}\‘\‘_s'-.‘_-.'w. RN GASTUREN
Al Y (L ) *\ N "N, . ¢

PR

-

%4 4 )

LY. Vi mwme

.- oS
e eds



% Languages.

Many languages currently exist which support the various electronic
system design tasks (Aylor, Waxman, and Scarratt, 1986: 17). Although some
traditional general-purpose programming languages are still used for
designing electronic systems (Katzenelson and Weitz, 1986: 371), such design
programs are time-consuming to write and tend to be application-specific,
offering minimal, if any, reuse capability. Katzenelson and Weitz showed the
importance of applying data abstraction to the design of electronic systems to
reduce time and increase the generic reuse capability. They also showed how
data abstraction can lead to specification clarity and avoid unnecessary
program detail.

Some high level general-purpose programming languages support data
abstraction and thereby allow structural and procedural descriptions of an
electronic component to be developed. Since most high level language
statements are sequentially executed, a general-purpose fanguage programmer
developing a simulation model of an electronic component has full
responsibility to encode control flow to simulate the concurrent effects of the
electronic component. This extra code tends to proliferate unnecessary
program detail, which Katzenelson partially avoids by using a high level
language with data abstraction.

Due to the insufficiencies of traditional languages a new class of
languages, Hardware Description Languages (HDL's), emerged in the 1960's.
;‘-C;; Initially many of the HDL's, such as IDL (Interactive Design Language) or CDL

oyt

2.2

o T P b P TR "\'q\\\‘s'-\‘b\’i'\\\‘-"\’-\“‘\‘-‘\‘-‘.‘\\-\'u\ -
N, WS AGLL GNP N O, > -P Lot N PP .'.'4'-('_-‘.-"'.' o L .-‘.-‘-"a N

%



C@ (Computer Design Language), were designed to handle a relatively small class
of electronic components. IDL was developed by International Business
Machines (1BM) Corporation to design programmable logic arrays (PLA's); and
CDL was developed to teach digital logic design. More recently, HDL's have
matured to describe a more general class of electronic components (Aylor,
Waxman, and Scarratt, 1986: 22).

In their study of HDL's, Aylor, Waxman, and Scarratt provided 12 factors k
for evaluating modern HDL's. Among these factors were the “range of hardware
to be described ..” and °.. language extensibility". The authors indicated that
a HDL should “support the complete description and design process™ from the
most abstract to the most detailed description of a hardware component.
6 Finally, the 1anguage should be technology independent and capable of growing
as technology advances (Aylor, Waxman, and Scarratt, 1986: 18-22).

Dewey and Gadient supported the choice of these criteria, stating that
simultaneously specifying an interface and documenting a design lead to the
assurance of having a system'’s properties and characteristics accurately ,
reflected in the completed design (Dewey and Gadient,1986: 13). In fact, as :
the first contract monitor for VHDL, Dewey embedded these criteria into the f

specification for VHDL. '
VHSIC Hardware Description Language (VHDL).

In response to such perceptions as these, the requirements for VHDL were

&

-~ established in 1981 by the United States Air Force (as agent for the

2.3




@ Department of Defense) in an attempt to “reduce IC design time and effectively ;
insert VHSIC technology into military systems” (Dewey and Gadient,1986: 12). ,
In the early stages of VHOL design, an extensive analysis of existing languages
and their environments was performed to extract the major advantages of each
(Aylor, waxman, and Scarratt, 1986: 17). By 1983 the requirements were
firmly established and the design of the VHDL language specification began
(Dewey and Gadient,1986: 12).

The language which most greatly influenced the grammar of VHDL was "
Ada, a high level general-purpose programming language which was also f:
sponsored by the Department of Defense. Like Ada, VHDL has both the
traditional procedural and functional capabilities as well as the more modern

6 capabilities associated with data abstraction, such as type definition, subtype
definition, operator overloading, and packaging. Yet, unlike Ada, VHDL is a
hardware description language. The difference is fundamental: a hardware
component is a physical unit which operates on all inputs concurrently to
produce an output. To describe hardware accurately, three agesign entities
were incorporated into VHDL: /nterv/aces, architectures and configurations ‘
An interface specifies the physical input/output ports available on a o
semiconductor chip; an architecture (the principal unit used to describe a chip)
specifies the chip’'s internal operation; and a configuration specifies how the 2
chip's ports are connected to the external world, such as board connections.
Functional subdivision into these three design entities provides the capability
to describe differing chip architectures without changing the ports or the port

connections; it also permits hierarchically defined architectures. An abstract

., RRFRARAS

’.'f;’.:‘ example of the design entity relationships is depicted in Figure 2.1. R
2.4
4 /. '{I X ."'.';‘;";"';';'.\*."."'L"\'\' (\" -' "‘q'-‘-'—\""r'.'."-.‘-.' *-\'-'.'-."\"."-.’. A R S A o T e




- e

b

> v « o,

."rff.f-a.r

-------

arclitecture
bedyT

2\

ceafiguratioa
bedy

Cavetrend  Clotartaasd  Cintartoes>

architacture architecture srchitecture
body bedy— body
ceafiguratioa coafiguration ceafiguratiea
bedy bedy bedy
Figure 2.1: VHDL Design Structure.

A chip description can be constructed hierarchically, using either
concurrent statements or sequential/ statements. Concurrent statements are
statements which simultaneously execute, while sequential statements
execute in the order which they are encountered. The architecture which
contains only concurrent statements is called a séructural description, while
the architecture which contains only sequential statements is called a
behavioral description. An architecture can contain both concurrent and
sequentiai statements. Concurrent statements primarily operate on sighals,

while sequential statements operate on variables. A signal is similar to a

2.5

v A L L R L S o A e e et et e e e et
'."vﬁ".. Y -,,-\\\\ﬁ‘v\ N AN AT T AN T



variable, except that signals include the notion of time.

Although the preceding discussion of VHDL was necessarily cursory, the
VHDL Language Reference Manual (intermetrics, 1985a) contains a complete
description of the language. In the following section, a general background for
an intermediate VHDL data structure, called Design Data Structure (DDS), is
discussed.

A Design Data Structure (DDS).

DDS (Afsarmanesh and others, 1985: 14-44) was developed by Knapp and
Parker in 1984 at the University of Southern California. DDS is a method of
representing four abstract views of a hardware model: datallow, timing,
structure and pfiysical (Knapp and Parker, 1984: 10-13). The dataflow view
represents functions and the values associated with a functional
transformation. The timing view represents the range of time under which the
transformations occur. The structural view represents a schematic diagram
with its components and interconnections. The physical view ‘, in contrast to
the structural view, represents the actual size and placement of a component
and the size and placement of wires.

The four abstract views are not independent. When considered together

with their dependencies, the views form a directed acyclic graph. Figure 2.2

1. Within the scope of the prototype AFIT YHDL Environment (AVE) project, the physical view of
DDS will not be used. However, the concepts of the physical view will be preserved for eventual
integration of the AVE into a unified AFIT YLSI design environment which uses ane central
database created using the concepts of DDS.

2.6

VA A P S R A A N S
Y AN RN SR N Rt S AT VATV A S

ol P

Ll BB




mode)

dataflow timing structuralphysical

Figure 2.2: Directed Acyclic Graph.

presents a simple directed acyclic graph which shows the four views of a
hardware model. In graph theory, the circles in Figure 2.2 would be called
vertices or nodes. Yet, within the scope of DDS, the terms vertex and node
are not synonymous. The circles are called circles or vertices; the term node
is a name for a type or a class of vertices. Furthermore, in graph theory, the
arrows in Figure 2.2 would be called arcs or re/ations Within the scope of
00S, the arrows are called arrows, re/ationships or bindings. The pattern
within a circle represents the type of vertex. A clear circle always has a type
name associated with the vertex. For instance, the circle with vertical bars in
Figure 2.2 is a vertex of type dafar/ow. |n Figure 2.3, the clear circle at the
top of the figure is a model vertex, the circle with the horizontal lines is a
timing vertex, and the timing vertex is bound to a range vertex. The term
subspace means the set of vertices and bindings subordinate to a dataflow,
timing, structural, or physical vertex. InFigure 2.2, the dataflow subspace

consists of one vertex, the dataflow vertex. InFigure 2.3, the dataflow




e

value carrier block

Figure 2.3: Hierarchical Tree of a Model.

subspace consists of three vertices and two bindings.

The primary graph for representing any hardware model is the tree
depicted in Figure 2.3. The tree represents the hierarchy of the model, with
the first level of the hierarchy representing the datafiow, timing, structural
and physical subspaces. Each subspace is further decomposed into one or more
components. The dataflow subspace consists of nodes and values. The node
vertices represent functional transformations. The value vertices represent
the results of functional transformations. The timing subspace consists of
ranges of time. The range vertices represent an interval of time required to
control the flow of the functional transformations. The structural subspace
consists of carriers and modules. The carrier vertices represent
interconnecting lines on a schematic diagram over which the values in the

2.8




model model

range

Figure 2.4 Inter-Subspace Relationships.

dataflow subspace are carried. The module vertices represent the components
on a schematic diagram, within which functional transformations occur. The
physical subspace consists of blocks and nets. The block vertices represent
the physical features of a design mask layout. The net vertices represent
interconnecting wires in the design layout. Blocks and nets are related to
modules and carriers, but the blocks and nets have attributes such as size,
orientation, 1ayer, and technology.

As the preceding discussion pointed out, the subspaces are interrelated in
several ways. The black triangles in Figure 2.4 represent the intersubspace
bindings which occur at a lower level in the hierarchy. These intersubspace

e bindings transform the hierarchical tree into a directed acyclic graph. As

Figure 2.4 shows, two distinct inter-subspace bindings exist:

29

‘N Cd o e e A R 2 N e A AT AT NS AN L N L AN 8 LA N T, AN TSRS WVESES AR PP TR TR X
oy 0 QN { ) '.') \u ALY [\ ) ¢ ") L 4 Py A oW G ;v ‘\\%\fh',

DT AN g |



() model
D © © O

& &
ELOOOOO0OO

values

Figure 2.5: Dataflow's One-to-Many Relationships.

carrier-value-range and module-node-range bindings (Knapp and Parker, 1984
14). Both inter-subspace bindings change with respect to time. For instance,
suppose at time tg wire A carries a 5 volt charge, and at time t the charge is
dgrained. In this simple example two carrier-value-range bindings are
established: A-5-tgand A-O-t,. Additionally, a binding internal to the time
subspace was established: time tg occurs before time t;.

The root of a subspace has a one-to-many relationship with its
subordinate vertices. For instance, Figure 2.5 shows a model whose dataf low
subspace has two nodes and six values while the other subspaces have no
subordinate vertices. A model such as this could easily represent all that is

. known about a hardware component at the earliest stage of the design process.
&' For example, perhaps the designer knows the initial conditions for two

210

..... . - A A br ;e p e
A : ‘ o AN T LTt L ST



() models ()

(i = ;Ii 2N
1
NG

Q) - () hodes OO0 OO
values values

Figure 2.6: Inter-Model Binding.

functions which will be performed. As the design process continues, the

ﬁ designer may discover that the two functions represented by the nodes in
Figure 2.5 are actually identical operations which could be represented by a
second model. The second model would have a set of subspaces as depicted in
Figure 2.6. At this stage of the development, both nodes in the first model
point to one copy of the second model. At some point in the design process,
the designer would have sufficient information about both models to describe
their structure and behavior. At that time, two copies of the second model
would be created and inter-model subspace bindings would be created for all
subspaces. The inter-model subspace binding essentially reflects shared
assets.

Knapp and Parker present a complete list of characteristics of these

subspaces and the reader is referred to their work for further detail (Knapp
and Parker, 1984: 35-61).

R S S T R ORIty



@ Summary.

Although electronic circuits were first modeled using high level software
languages, the need to reduce cost, to reduce time, and to simplify
documentation led to the development of VHDL. VHDL has not only the
programming power of a general-purpose programming language, but also,

three design entities (interfaces, architectures and configurations) which
! enable modeling an electronic circuit. These entities, coupled with the

embedded concepts of signals and concurrent statements, strengthen VHOL.
VHDL allows top-down design using architectures independent of the interface
and configuration. The hierarchy embedded in VHOL architectures can easily be
preserved and represented in the Design Data Structure (DDS) of Knapp and
ﬁ Parker. VHDL and DDS share three important concepts: behavior (or dataflow),
) time, and structure. In the next chapter, the relationship between VHDL and

DDS is defined in terms of an intermediate form called VHOL Intermediate
Access (VIA). The complete V!IA specification is provided in Appendix B.

o
P
'

SO AN AN W A R AR N N N N A AT N N NN AN W NN NN N



I1l. System Design

Overview.

Designing a system is the process of specifying system requirements,
transiating those requirements into a functional system organization,
determining the external input, and establishing the desired output.
Therefore, four topics are discussed in this chapter: the ianguage analyzer
system requirements, the language analyzer system organization, the VHDL
input subsets transiated by progressive implementations of the system, and
the intermediate form output, called VHOL Intermediate Access (VIA).

System Requirements.

The environmental, functional, and performance requirements for the

language analyzer system are summarized as follows:

1. tmbed the language analyzer in the UNIX environment.

2. Support a wide range of VHOL design tools.

3. Analyze the syntax and semantics of VHDL, Version 7.2

(Intermetrics, 1985a).
4 Emphasize user friendliness.

Factlitate ease of maintenance.

5

6. Process a 1000-1ine input file within three minutes of CPU time.
7. Analyze one input file per execution of the language analyzer.

8

Reduce output file size.

.......................



o

-
A A N v'e'a‘. «

- N R e > " RS TG IR T PR * 2w e e N hY T Y . - -
Co Ca\ T4 . B, NN RGN A AN O, A S O A A ST AT MG ARG AT AN Ay

T - —rer WP Y B T

For this project, code optimization was considered a non-important
requirement, rather, as discussed in Chapter 1, the emphasis for this project
was to produce a functionally correct prototype analyzer. Although good
software development techniques, such as structured design, information
hiding, and structured code, were applied to this project, the emphasis was on
building a functional initial prototype, rather than on performance.

The rationale behind these requirements is explained below.
1. Embed the 1anguage analyzer in the UNIX environment. As mentioned in
Chapter1, the language analyzer is the front-end processor for the prototype
AVE environment. Since AVE is designed to reside on the UNIX system, the
language analyzer by default must execute on the UNIX system.

2. Support a wide range of VHOL design tools. As mentioned in Chapter 1, at
the start of this project three AVE tools were identified to interface with

the language analyzer. Potentiaily other design tools will eventually be
designed to interface with the language analyzer. With an open-ended set of
AVE design tools, the language analyzer must be designed independent of any
specific tool and emphasize an interface for a wide range of tools.

3. Analyze the syntax and semantics of YHOL, Version 7.2 (Intermetrics,
19852). As mentioned in Chapter |, during 1986 the IEEE was establishing an

industry-wide hardware description langucge based on VHOL, Version 7.2. So
the draft IEEE standard was an alternative to using VHOL Version 7.2 as the
baseline for this project. Yet, this requirement would have increased the risk
associated with a successful completion of the analyzer due to fluctuating
baseline requirements. Therefore, VHDL Version 7.2 was identified as the

3.2

n ™ N e R PR TR e

hY



% baseline definition for this project.

4 Emphasize user friendliness. The analyzer is intended to support
students in an academic environment. Therefore, the analyzer must be easy

to operate, support a meaningful “help” capability, provide clear concise error
' messages, provide meaningful output, and execute within a reasonable period
of time.

S. Eacilitate Ease of maintenance. As mentioned in Chapter 1, this project
was an incremental development effort. So, by necessity, the analyzer must
4 be easy to modify not only during initial development, but also during the

follow-on refinement to incorporate the changes to VHOL generated by the
6 IEEE community.

6. Process a 1000 line input file within three minutes of CPU time. As
discussed in Chapter 1, the prototype analyzer emphasizes function with

performance as a secondary goal. Nevertheless, a minimal acceptable
baseline was arbitrarily established by the author: analysis of 1000 lines of
VHODL code within three CPU minutes.

useful analyzer would process multiple input files; yet, analysis of multiple
files would necessitate developing a linker for the associated output files.
Since a linker was not defined within the scope of this project, the number of
input files was limited to one. However, within that VHDL source file,

N
2 multiple design entities may be defined because VHDL requires multiple
design entity interaction.
3.3
N G G B A Vi T D S TR R T S 0 S i S S N T L LR S



w 8. Reduce output file size. Two conflicting constraints regulate the
optimization of the output file size: maximizing readability and minimizing
wasted space. Since tool builders read the files generated by the language
analyzer, the information in the files must contain sufficient information to
identify the contents. Yet, at the same time, unnecessary information should
be minimized so reduction of the output file size was established as a
requirement.

System Organization.

Two potential design methodologies existed for deriving the system

organization; create a system design based upon the aforementioned

ﬁ requirements, or tailor an existing design to meet them. The first method
provided the advantages of performing a complete top-down system design. A
top-down system design would ensure all system requirements were
decomposed and efficiently translated into the end product. Yet, the first
method gave the distinct disadvantage of increased design time. As
mentioned in Chapter 1, three parallel projects were associated with this
project in the creation of the prototype AFIT VHDL Environment (AVE). The
success of the prototype AVE depended upon an early prototype language
analyzer. Therefore, the second method was used.

In addition to decreased design time, the second method provided the
following advantages:

1. Eacilitated transfer of technology. Transfer of technology was achieved

LA in three ways. First, the initial design was based upon a C compiler developed

by Schreiner and Friedman (Schreiner and Friedman, 1985). Their design was

34

< gty - . - o L AL N T '_-_._._'
vl YA . NN

» ',ﬁ"'z’f’f’f’.-'}.‘f.'.c‘



A2,

3

selected because the design and the code for the program modules were well
documented. Second, some design modification decisions were based upon
work done by Intermetrics while under contract to the Department of Defense
(Intermetrics, 1986¢). Intermetrics specified the semantic actions for a
VHDL parser written in Ada. These semantic actions were modified for the
AFIT VHDL parser. Third, the intermediate form was based upon the Design
Data Structure (DDS) developed by D. W. Knapp and A. C. Parker at the
University of Southern California (Knapp and Parker, 1984). Using DDS as the
underlying structure for VHDL Intermediate Access (VIA) reduced the
research time required to specify the intermediate form during the system
design phase.

2. Extensive use of compuyter aided design tools. As stated earlier, the

initial design was based upon Schreiner's and Friedman's work (Schreiner and
Friedman, 1985). They used two computer-aided design tools: L&Y and YACC
LEX is a lexical analyzer generator (Lesk and Schmidt, 1978), and YACC is a
parser generator (Johnson, 1978). Both LEX and YACC were available for use
while the author was developing the VHDL 1anguage analyzer. Both tools
facilitate information hiding; reduce development and maintenance time; and
generate C code. Therefore, in order to make use of C-based computer-aided

design tools, C was selected as the implementation language.

The system organization which evolved is depicted in Figure 3.1. A main
driver program calls the parser. The parser checks the grammar calling the
lexical analyzer for tokens. When the parser needs information about a

literal, the parser calls the symbol table routines. Upon finding an error, the

parser calls the message handler routines. The lexical analyzer finds tokens




LR NAN ...!. n.a- -.-_ .

main

code
symbol table f¢—1 parser ——ﬂ generator

N

lexical message
analyzer . handler

Figure 3.1: VHDL Language Analyzer Design

in the input file and passes the tokens back to the parser. when the lexical
analyzer reads a literal, the literal is entered into the symbol table. When
the lexical analyzer reads an undefined sequence of characters, the message

handler prints an efror.

As mentioned earlier, the basic design of the language analyzer was
derived from Schreiner’'s and Friedman's work. Of the six modules depicted in
Figure 3.1, two required no tailoring: ma/n and message handler The
modifications to the other four are explained below:

Parser. Since Schreiner’'s and Friedman’s parser recognized a subset of
the C language, it was necessary to modify their parser to recognize VHDL.
As mentioned earlier, the parser is generated by YACC (Johnson, 1978) (see

3.6

A P A e T e et o e T N e



YHDL

specification

T

YACC

C code

parser

Figure 3.2: Parser Generation

Figure 3.2). The VHDL specification contains production rules and Semantic
actions which describe VHDL. These production rules are similar to the
grammar rules defined in the VHDL Language Reference Manual (Intermetrics,
1985a: C-1 to C-20). The production rules essentially allow the parser to
analyze the syntax of the VHDL source code, while the actions analyze the
semantics.

Lexical Analyzer. Since Schreiner's and Friedman's lexical analyzer
recognfzed tokens for the C language, it was necessary to modify their lexical
analyzer to recognize VHDL tokens. As mentioned earlier, the lexical analyzer
is generated by LEX (Lesk and Schmidt, 1978) (see Figure 3.3). The token
specification contains VHDL token definitions and their classifications. The

AR b3
".!.. .\

token definitions are based upon the lexical elements defined in the VHDL

e XA

P

A
-
L

- - - .- - - o .I K3 '.‘ '. '. « L. ’- - .l -~ - » - Y .t . . Y e - .,.. " st T DR S S P | .

SR S0 L S R S N AR O S R SR R N SN VRSP PR S SRR A



token : '
specification

C code

lexical f
analyzer

Figure 3.3: Lexical Analyzer Generation.
Language Reference Manual (Intermetrics, 1985a:; A-1 to A-11).

Symbol Table Processor. Since Schreiner and Friedman designed their

symbol table for the C language, it was necessary to modify their symbol

table processor to process VHDL symbols. The symbol table processor is a set

of functions which maintains a table of all identifiers and literals. The "
symbol table {s central to the correct operation of the language analyzer. The
symbol table processor not only maintains type information, but also ¥
maintains scope information for all identifiers/literals. Since the type and -
scope fnformation required by Schreiner and Friedman was different for VHDL,
the symbol table concepts were modified as depicted in Figure 3.4. p

o)
Sy

. - v A ” » L4 . - - . - . g
ALl L e L e



< lib_first symbol symbol symbol symbol

s lcl
v Y y snext

] g | | s lih_last
design ol design -DJ design design daignl———

. o ,_' . _’
© gl e e M
| saety (yyy v XX2KX,
NULL  NULL NULL NULL
symbol
v_pte p g v_ptr
s nexty b
symbol s _gbl v_next
a|" i
) |2
NULL LBGEND
NULL symbol table entry
g 8 []  visibility entry
s Dpointer label

. -
Pl
W)

~ -

Figure 3.4. Symbol Table.

TR R SRR LI T L AR Wt T TR A St R T R S S e S A S AL A St R S S S L NP
NACTICIH, N ACTE PN TERCTOT T A, S04 -'.0"".' e R e e e A A N I I RN N A A AR ARG M N N AN NN,



@ Schreiner's and Friedman's symbol table was a simple linked list (stack)
of symbols, where the top of the stack contained local symbols (such as
variables) and the bottom of the stack contained global symbols. The
concepts of their symbol table were preserved; they are depicted in Figure 3.4
as the left-most linked list extending down the figure. in VHDL, design
entities are made visible by the context clauses. Therefore, it was necessary
to modify Schreiner's and Friedman's symbol table to maintain information
about symbols which are not visible. The modification was accomplished by
moving design entities to a second linked list for design units. The design
entity linked list extends horizontally across Figure 3.4. When a context
clause is specified, the appropriate design units are linked into the global
region of the symbol table.

ﬁ To further complicate the issue, VHDL's architectural bodies and
configuration bodies can inherit direct visibility from an interface definition.
This, therefore, necessitated the preservation of the information in the
context clauses by the linked lists |abeled w/¢/ and use in Figure 3.4,

Code Generator. Since Schreiner’'s and Friedman's code generator
targeted the C language, it was necessary to modify their code generator to
create the VHDL Intermediate Access (VIA) format. The modifications made
to the code generator are explained in Chapter 4.

Incremental System Implementation.

."'5: Recall, from Chapter 1, to implement the system described above an

incremental development approach was chosen because three parallel

e S R N LS e Sy

o \f Lal o)



‘I‘

o N
WL

¥

development projects required early access to the intermediate information
generated by the language analyzer. The increments could have been chosen
either vertically (to completely design, code, and test the language analyzer
as three distinct tasks) or horizontally (to specify language subsets, each of
which would be designed, coded, and tested before beginning work on the next
subset). The horizontal VHDL subsets were chosen 1) to enable early
identification and resolution of potential problems; 2) to ensure correct
external interfaces for the AVE tools; J3) to establish correct internal
interfaces for the analyzer's modules; and 4) to reduce the complexity of the
project by limiting the scope of the probiem.

With this decision, the question of how to subset the 1anguage arose. As
defined by the Language Reference Manual (intermetrics, 1985a: 1-4, 10-1),
VHDL has five major constructs or design entities: /ntervaces, packages,
subprograms, architecture bodles, and configuration bodies Interfaces
primarily define the signals, ports and other resources which define the
external view of a hardware component. Packages primarily define the
existence of software types, procedures and functions which are used within
other subprograms and architecture bodies. Subprograms primarily define the '
behavior of a hardware component. Architecture bodies primarily define the
structure of a hardware component. Within an architecture body, subprograms
are used to describe behavior when the level of a design requires a functional
description. Configuration bodies primarily define the interconnection of
ports between two distinct hardware components.

To reduce the complexity of implementing the language analyzer,

analyzer development was undertaken in subsets corresponding to VHDL's

31

. teYae R T R L N T U S T
. ‘. e K : .’z’- .-,_..r .'\.-__,_e\.- s" \\: .-.r "'b"- -__r\‘ (y NS



~—

s am

L

T Y TR

= 2 A g

Iﬁ‘
W

LY

design entities, context clauses, declarations, expressions, sequential

statements, concurrent statements, configurations, subprograms, and other
constructs. As subset were added to the language analyzer, each of the five
major language constructs received enhanced capabilities.

Design Entities. The design entities subset addressed those features of
the language required to recognize the semantic shells for interfaces,
packages, subprograms, architecture bodies and configuration bodies
(Intermetrics, 1985a: 1-1,1-4 to 1-5, 2-1, 3-1). This subset did not address
any optional semantic capabilities allowed in VHDL because they were
addressed by the next five subsets.

Context Clauses. The context clauses subset addressed those features of
the language required to establish the VHDL inter-entity scoping rules
(Intermetrics, 1985a: 10-2). This subset did not address multiple input files
because multiple input files were outside the scope of this project; but it did
address multiple design entities within a single file.

Declarations. The declarations subset addresses all formal declarations
allowed within any VHDL design entity (Intermetrics, 1985a: 5-1). This
subset did not address the use of complex expressions to establish a
declaration. Only one expression was used, a simple name; the use of
complex expressions in declarations was addressed in the next subset. This
subset was selected due to the commonality of declarations across all design
entities, and because VHOL is a strongly typed language.




% Expressions. The expressions subset addressed those features of the
language required to capture and process the semantics of an expression
(Intermetrics, 1985a: 7-6 to 7-20). This subset did not establish the
semantic validity of concurrent or sequential statements (these concepts
were addressed in the next two subsets). The subset was chosen to complete
the declarations started in the previous subset.

Sequential Statements. The sequential statements subset addressed
those features of the language needed to describe the function or the behavior
of a hardware component (intermetrics, 1985a: 8-1 to 8-12). This subset did
not establish the validity of concurrent statements (see next subset). The
subset was chosen based on its similarities to general-purpose programming
5 languages with which the author was familiar.

Concurrent Statements. The concurrent statements subset addressed
those features of the 1anguage needed to describe the structure of a hardware
component (Intermetrics, 1985a: 8-12 to 8-26). This subset was chosen to
complete the architectural body capabilities.

Configurations. The configurations subset addressed those features of
the language needed to link architecture bodies with configuration bodies
(Intermetrics, 1985a: 1-S). This subset was chosen to complete the
configuration body capabilities.

Subprograms. The subprograms subset addressed those features of the
& language needed to link subprograms to other subprograms, packages, and

architecture bodies (Intermetrics, 1985a: 2-1 to 2-4). The subset was chosen




to complete the subprogram capabilities.

Qther. The other subset addressed features of the 1anguage which were
potentially omitted in the previous subsets. This subset was chosen to
complete the entire language capabilities. |f a capability was known, but
intentionally not addressed, then the deviation from VHDL Version 7.2 was
explained in Appendix A

Table 3.1 presents the capabilities projected for each of the five major
language constructs as each subset was added to the language. The initial
subsets provided a firm foundation across the entire 1anguage. The logical
progression of capabilities across the language reduced the risk factors
involved with an incremental development. These risk factors were 1)
inaccurate or incomplete understanding of VHDL semantics; 2) reduced
probability of a good design solution due to narrow problem focus; 3)
increased probability of code modifications due to design changes; and 4)
increased probability of repeating completed test analysis due to design and
code modifications. The selection of the subsets in a pyramid fashion
restricted these potential risks by narrowing the problem domain to either
the current or the previous subset.

Intermediate Form.

As discussed in Chapter 1, three potential intermediate forms could have
been usec" an original design, intermediate VHDL Access Notation (I1VAN), or
Design Data Structure (DDS). An original design would have extended the
initial design time by at least six weeks. The extra design time was

3.14

B A VAN L8 A, Mo VYN NN N e e e e T e LT

r
»




construct £ ;' g
Py ; i %i
design-file > > X X X
context-clause X X X X X
declarstions > p 3 X x X
expressions > X X X X
sequentisl stmis X X X
concurrent stmts X X
confligurstions > )4
autorogrems X | X | X
other

Table 3.1: VHOL Subsets and Capabilities.

prohibited by the parallel AVE development efforts requiring_the definition of
the intermediate form for their design cycle. Although both iVAN and DDS
were documented, | VAN assumed the existence of a design library manager.
Since the prototype AVE did not include or require a design library manager,
DDS was selected over | VAN.

An extension of DDS is the underlying structure for the intermediate
form chosen. Both VHDL and DDS have constructs to hierarchically represent
behavior (or dataflow), time, and structure. VHDL and DDS basically represent
the same information with respect to either behavior or structure. Yet, they
represent different timing information. To explain this difference, we shall
say that VHOL represents gynami/c sequencing and gymamic scheaduling time,
while DDS represents static sequencing time. Dynamic sequencing is the
determination of the next state of a simulation mode! based upon the current

state during execution. Dynamic scheduling is essentially the process of

3.15

--------------

e S AN,



2Ll

2%

specifyi~n which of the current states will affect future states of the
simulation model. With static sequencing all possible next states are
determined prior to execution of the model.

Due to these differences, DDS was extended to include the dynamic
sequencing and dynamic scheduling times. Additionally, DDS was explicitly
designed as an interface for LISP programs. As mentioned earlier, one
requirement for the AVE analyzer was to interface with a wide range of
design tools. To achieve this requirement, the extension to DDS was designed
to be language independent. This extension to DDS is calied VX
Intermediate Access ( V/IA) format.

The VIA format is an alphanumeric pile file (i.e., a file with sequential
variable-length records) format which was developed with five underlying
constraints derived from the project requirements: an incremental
development approach, consistency of representation, simplicity of
representation, ease of modification, and language independence. For an
interface to be specified in increments, consistency of representation,
simplicity of representation, ease of modification, and language independence
become critical to the success of the project.

The full VIA format specification is provided in Appendix B; yet, a brief
description is given here. In typical usage, the analyzer creates a VIA file in
the user’s present working directory. The file consists of one control record,
viatable, followed by one or more VIA records. The format for all records is
the same:




record-number record-type-name ( field-name-1 = field-value-1 ; ... ;

field-name-n = field-value-n ;)
Each record starts on a new line with a positive integer record-number. The
record-number of the control record is always zero. The record-number is
followed by a space, then the record-type-name. The record-type-name
indicates the type of the record and establishes the valid field-names which
are used for that record type. Following the record-type-name is a list of
field-names and field-values separated by semicolons and enclosed within
parentheses. Only those field-names which have an established value (which
is not a default value) are printed.

Following the field-name is the equal symbol, which indicates the fieid-
values will follow. Each field-name has one field-value followed by a
semicolon. A semicolon followed by a closing parenthesis indicates the
record is complete. Any white space within a record is a delimiter, unless
the white space is enclosed in quotation marks. White space includes blanks,
tabs, new lines, etc.

Appendix B contains a complete list of record-type-names with their
associated field-names and field-value definitions; and Appendix C provides

several examples, one of which is depicted in Figure 3.5.

The interface declaration depicted in Figure 3.5 was selected as an
example based upon its completeness and simplicity. The first block in the
figure represents a record with the record-type-name viatap/e The viatab/e
points to another record with the record-type-name component. This
information is represented in the first VIA record just below the diagram.

317




:

v
-, <

VHDL Source Code:

entily INTERFACE_NAME /s
end ;

Enhanced DDS:

viatable component:

 name: INTERFACE NAME

| complete bit: true

component Loperation bindings: nyll
 dataflow model: null
. null
| structural model: null

VIA Representation:

0 viatable ( component = | ;)
I component ( name = INTERF ACE_NAME ; )

Figure 3.5: VHDL Represented in VIA

3.18

PR TRUR S A G VA T N ST TR I I e S PN NN ~ ~ “~
Lot ‘. .\ LAY i, -\ "~ . .o "ﬂ Ly N . \" ..n An L < '\'f\"“ '.\"\*‘f

"

ENE NN

-

vy

“~
!

f".'.‘-"\(‘-,:-'.\':.'\' y



Since the field-name is also a valid record-type-name, the field-value is

interpreted as a record number, in this case the number 1. Therefore, record

1 is expected to be a component record.

The second block of the diagram points to no other blocks, but has six
attributes. Of these six attributes, only name contains information which is
not default information. Therefore, the only field~name which appears in
record 1 is name. The other attributes which contZin default information are
not printed in the VIA file. The default values are assumed for the

non-existing field-name in the VIA file.

This example, although simple, shows how the basic VIA format supports
the requirement to reduce output file size. The long record-type-name and
long field-names, and the redundancy between the record-type-names and the
field~-names render the file readable. Assuming the existence of defauit

values minimizes the size of the overatll file.

Summary.

In this chapter, nine system requirements were established to emphasize
function as a primary goal and performance as a secondary goal for the
language analyzer design. These nine requirements were incorporated into a
system organization which increased transfer of technology and the use of
computer-aided design tools. The basic design of the system was tailored
after a C compiler designed by Schreiner and Friedman. Their design coupled
with the use of computer-aided design tools facilitated the ease of
maintenance required for an the incremental development approach. The

3.19

v g

.y a2t aw RIS FAT RN Dl P R A AP T YR e )% e
R N AN TN B AT AT W NN R A AT S N N AN P E A N DN AN



incremental development approach was further supported by the nine VHDL
language subsets chosen to provide a wide range of capabilities across the
entire 1anguage. The careful selection of subsets reduced four risk factors by
insuring the scope of potential problems or of design changes was limited to
either the current or the previous subset. Finally, the selection of VIA as an
extension of DDS reduced the design time required to specify an intermediate

data structure.

3.20




IV. Detailed Design

Overview.

The analyzer's system organization presented in Chapter 3 was designed

to allow an incremental implementation based upon nine VHDL language

subsets. The nine subsets were chosen to focus the problem domain into

manageable slices for which the solution domain could easily be determined.

Recall, from Chapter 1, after the subsets and intermediate form were

selected several subtasks were established for each subset. These subtasks

were:
1) Create detailed examples showing the relationships between the VHDL
subset and the intermediate form;

2) Determine the appropriate design changes based upon those examples;

3) Implement the design changes;

4) Test the code using the examples produced in step 1, and

S) Analyze the results to determine whether the solution domain in fact

satisfied not only the problem domain for the particular subset under

consideration, but also previous subsets completed.

The design decisions for steps 1, 2, and J are presented in this chapter,

while the analysis decisions for steps 4 and S are presented in Chapter S.

Now, discussing nine subsets with at least three topics each would

overendow the reader with unwarranted details. Therefore, this chapter

presents the important information in four sections: the basic methodology

used for each subset, an example of the design work, the major design

.................

— e



decisions, and the language analyzer's detailed design.

Basic Methodology.

The detailed design approach applied to each subset was to create
detailed examples, to determine appropriate design changes, and to implement

the design changes. Each of these steps is discussed below.

Create detailed examples. Creating detailed examples of the
VHDL-to-VIA relationship was the process of identifying that portion of

VHDL's grammar under consideration for a particular subset, writing
examples of VHDL source code, representing the VHDL code in the enhanced
Design Data Structure (DDS) (Afsarmanesh and others, 1985), and translating

DDS to VIA. At the beginning of this pro ject each of the above steps was

performed to assure consistency in representation and to create a firm
foundation on which to build later subsets. Further into the project,
translating the entire VHDL example into DDS became cumbersome and hard to
read; therefore, only that portion of VHDL under consideration was translated

into DDS. Appendix C contains examples which were the result of this step.

Determine the appropriate design changes. Based upon the examples

generated in the previous step, detailed design changes were derived.
Determining these design changes was a logical outgrowth of the first step,
in that the original examples implied a pair of specific functional
transformations, ¢ and / f(x) was defined as the transformation from VHDL

to DDS where x was example VHDL source code, g(z) was defined as the

42

-

LR Y LU PO I I I I I
AN FCAUN OGO




NN IIENN 3 IV NI BT N N M N A B VTG R 2R N AN N

transformation from DDS to VIA where z was example DDS representation,

and y = g(f(x)) was the example VIA.

The identification of these two separate transformations had two
significant consequences. First, it implied that the VIA file should be created
using two steps, rather than one. And second, this characterization implied
that a design translation could, in fact, be performed consistently
independent of the particular subset under consideration. As stated in
Chapter 3, the overall design of the language analyzer was based upon
Schreiner’'s and Friedman's work (Schreiner and Friedman, 1985). Therefore,
in order to capitalize on technology transfer, the first transformation, f, was
defined as an extension of the basic concepts presented by Schreiner and
Friedman with respect to transforming semantic content of the source code
into a symbol table. Yet, if their concepts were preserved, then either a
transformation from the symbol table structure to a DDS structure was
required for VIA generation (or, alternatively, the VIA generator itself could
make that transformation). Traditionally, code generators do not modify
input, because they are procedures which print output based upon the input.
Yet, creating a third function to transform the symbol table structure into the
DDS directed acyclic graph would increase memory requirements and reduce
operational performance. Additionally, the above mathematical analysis
suggested only two transformations were required, not three. Therefore, for
the above reasons, the second technique was used, a technique which allowed
the code generator to transform input, print results, and return an indicator
of the result. Once established, this technique enabled the design of the

language analyzer to proceed smoothly from subset to subset.

43

.
L) )

R

(e ) * )
ALY,



2t

o«
&
PVt St g

implement the design changes. After each design increment was

determined, pseudocode was written, then the pseudocode was transformed

S e = B W g

into the language C. Aside from being a good programming technique which
leads to structured code modules, the author chose to use pseudocode for two

reasons. First, at the beginning of this project (prior to developing the initial

J o enl

pre-prototype parser) the author had never written C programs. Second, it
has been suggested that to learn a new language one must use what he/she

knows about other languages and transform this information into the syntax

RN IO oV Pl

of the target language (Drew, 1981). Therefore, it seemed reasonable to start

with pseudocode and transform the pseudocode into C code as a secondary ’
process. The pseudocode applied to this project was an informal technique, :
6 and, as such, is not presented in this report. o
Design Work Example. R
As a detailed example of the type of design work associated with the ;
basic methodology, consider the design of the first subset, the Jesign-File :"
Problem. The Design-File Problem was the probiem of recognizing the '
semantic shelils for interfaces, packages, subprograms, architectural bodies ]
and configuration bodies within the ges/gn-entity subset. Recall, from R
Chapter 3, each VHDL subset was selected to provide a wide range of &
capabilities across the breadth of the language. Since VHDL has five principal P
constructs, recognizing each of these constructs seemed the ideal first ?.
problem. :
'E.

44 g

AT XA BT P Y
A \ Y A

» “
IR ALY Tl U W




Two options were available for the resolution of this problem: the five
major constructs could have been designed either as individual constructs, or
as a group of constructs. Processing each construct separately provided the
advantage of an early understanding of how code generated by either YACC
interfaced with modules designed by the author, and the disadvantage of
potentially inconsistent VIA representations for the constructs. Processing
the five constructs in parallel provided the advantage of consistent VIA
representation and utilization of common functional modules, and the
disadvantage of a potentially incomplete understanding of the YACC interface.
Since neither method seemed to be ideal for all decomposition steps, a
mixture of the two was decided upon for this subset. The constructs were
considered in parallel for creating the detailed examples, and they were
considered individually for the design and impiementation steps. This
decision assured a consistent VIA representation, and through it the author
quickly learned techniques to interface with YACC.

As mentioned earlier, each of the subproblems needed to address three
steps in the design process: created detailed examples, determine the
appropriate design changes, and implement the design changes. The decisions

associated with these step are discussed next.

Create detailed examples. Creating detailed examples involved four

steps: identifying that portion of VHDL's grammar under consideration,
writing examples of VHDL source code, representing the VHDL examples in the

enhanced DDS, and translating DDS to VIA. The portion of VHDL's grammar

which applied to the first subset (as depicted in Figure 4.1) was not a

IES

. e _F ¥



1. entity INTERFACE_ZNAME is
L X X )
end;

2. configuration CONFIGURATION_NAME
of ENTITY_NAME for ARCHITECTURE_NAME is

[ X X )
end;

3. package PACKAGE_NAME is
(X X )
end;

4. procedure PROCEDURE_NAME is
000
begin
000
end;

5. function FUNCTION_NAME return A_TYPE_NAME is
eoo

begin
( X X
end;

6. architecture ARCHITECTURE_NAME of ENTITY_NAME is
[ X X ]

end;

Figure 4.1: Subset | -- the Design Entity Shells.

complete set with respect to VHDL's syntax. By comparing the contents of the
figure to VHDL's grammar (Intermetrics, 1985a: 1-1,1-4to 1-5, 2-1, 3-1) one

can see that the interface, listed in item 1, and the configuration body, listed

?.:
;

LS
XN,



in item 2, are complete, but the other constructs are incomplete. Recall,
from Chapter 1, that a pre-prototype parser created prior to the start of this
project recognized all of VHDL's syntax. Therefore, although the semantic
analysis was limited to the subset under consideration, correct and
syntactically complete VHDL examples were created for use with this
pre-prototype parser. This decision proved useful, in that, the parser’'s design

was altered only by semantics from one subprobiem to the next.

The set of examples which were generated for the Design-File Problem
are listed in Appendix C. Those examples visually reflect the decisions on
how to represent VHDL in the enhanced DDS and in turn in VIA. One example
will be discussed to explain the interpretation of those examples. The
configuration body example as reflected in Figure 4.2 was selected for
discussion for two reasons. First, the configuration body was one of the two
VHDL constructs for the design-entity subset, which was both syntactically
and semantically complete. Since the interface example was discussed in
Chapter 3, to avoid redundancy the configuration body was the logical choice.

Second, the configuration body was a simple, but non-trivial, example.

F igure_4.2 embodies three sources of information: the VHOL source code,
the enhanced DDS, and the VIA representation. Mathematically, the example
represents a dual transformation, g(f(VHDL)) = VIA. The VHDL source code
represents the input domain; the enhanced DDS represents the application of a
single transformation; and the VIA notation represents the output range. The

VHDL Language Reference Manual (intermetrics, 1985a) explains the VHDL

source code, and the VIA notation was explained in Chapter 3. Accordingly,




VHDL Source Code:

configuration CONFIGURATION_NAME
of INTERFACE_NAME

. for ARCHITECTURE_NAME /s

end ;

Enhanced DDS: )

y - -

vistable

dataflow model: WAL
component [ timing_model. ML

structursLmodsl:
instantiste_and_merge: NULL
extends: NULL

| name: ARCHITECTURF NAMF

| complate hit- (alep

| _static_storage proparty. false

strucloral -} b structursl dimension: 0
model i i .

£ 7Ll

i n
has_model_constituent: NULL
instantiate_and_merge: NULL
extends: NULL

VIA Representation:

0 viatable ( model = 1 ; model =2 ;)

| model ( name = CONF IGURATION_NAME )

f2r|node; ( name = INTERFACE_NAME ; structural_model = 3 ; complete_bit =
alse ;

3 structural_model ( name = ARCHITECTURE_NAME ; complete_bit = false ;)

». e £

Figure 42: The VHDL Configuration in VIA.

48 )

AN

B 3 NN IR R R R G R R A A S A S A AR SR LRI LR AN WS



@ the following paragraph presents only a discussion of the transformation. )

In the example, the VHDL source code used three identifiers, each of
which is represented in DDS. As stated in Chapter 2, DDS is principally
composed of models (or components) which have four subspaces: dataflow, f
timing, structural, and physical. Therefore, each of the three VHDL |
identifiers was mapped into either a component or one of its subspaces. Also
recall, from Chapter 2, a configuration is the design entity which describes a

chip’s port connections for the ports specified in an interface declaration, \

while the architectural body describes the structure and behavior of the chip.
In a complete VHDL source description of an electronic circuit, the identifier
INTERFACE_NAME would have an associated interface declaration, and the

ﬁ identifier ARCHITECTURE_NAME would have an associated architectural body.
Since ARCHITECTURE_NAME implies that somewhere there exists (or will :
exist) an architectural body which describes the characteristics of the
structure of the component, the identifier was mapped into the structure
subspace of VIA. Also, INTERFACE_NAME implies that somewhere there exists
(or will exist) an interface declaration which describes the ports of the
model; therefore, the identifier was mapped into DDS as a component model.
Furthermore, the concept of configuration implies that the electronic circuit
has more than one sub-part, otherwise there would be nothing to configure;
therefore, CONFIGURATION_NAME was also mapped into DDS as a component.

The tree in Figure 4.2 depicts these relationships.

Determine the appropriate design changes. At the beginning of the .

Design-File Problem, the approach explained in the earlier section, labeled

P 4
s e

49
)

PR S ALY L P P I L I I N N I N T I AT S N I I T R I PN PN TR I N I T . € d
o, \'-'_. T D R LIS AT VR TN ST .',w.'_\'.,\,.'_._,.‘,-.,.,.,.._'._.'_.,‘.’,-.l.‘_s_,\‘.'_\ N -.-. w.*.-. ~.\ LAY



“ .
’
S

v)‘i'\‘.

<ol

"Basic Methodology”, had not been completely formalized. At the time, the
principal concern for the initial design changes was centered around
formulating a better understanding of YACC's interface, rather than
identifying a well-founded design approach. The basic design approach used
was to transform the VHDL source file into the symbol table and from the
symbol table create the VIA file as the semantic content of the VHDL source
was derived. This was not a good approach, although traditional. The
approach led to code generation routines which were based upon the structure
of VHDL for generating the directed acyclic graphs represented in a VIA file,
rather than upon a more general class of code generation modules. Although
the author was aware the modules would eventually require changes, the
traditional approach was pursued to learn about the specific shortcomings

and to avoid incorporating them into a refined approach.

Implement the design changes. The interface to YACC is not easily

readable. YACC requires partial C code segments to be inserted within the
YACC source file which describes the VHDL parser. YACC in turn generates a C
program for the parser using the C code segments. To increase the readability
of the C source file, procedure and function calls were used for the C code
segments (see Figure 4.3) rather than performing actions in line. Although
self-explanatory names were used, the actual names of the parameters
passed by YACC were less readable than desired. As Figure 4.3 shows, YACC
parameter names take the form of a dollar sign followed by a number, such as
$1 0or $2. The name $1 means the result associated with the first
non-terminal {(or terminal) of the current production; the name $2 implies the

second non-terminal; and so forth. Also as shown in Figure 4.3, the C code

410

O TN --.,'h"y':-'.\ -.'(*.4.& N R AT LT B \f" \A-.'.\.;\ \’\"_\'\"-, \‘\ N S AT AT .!

I L W )

¥ W]

-
[
[
.




architectural_body_declaration
- ARCHITECTURE
ldentifier

make_arch( $2 );
bik_push();

OF
libr[ary_name_or.id

process_visibility( §S, INTER );
IS
block_statement

ENDRW
opti{on_simple_name

verify_names( §2, $10 ),
Sem{icolon
architectural_body_declaration( $2, $5, $8 ),

delete_visibility('$S);
change_regions('$2 );

Figure 4.3: An Example Parser Production for YACC

segments are inserted between two non-terminals, or between a non-terminal
and a terminal. Each time a set of C code segments is inserted into a
production, YACC generates a new empty non-terminal for that segment. This
implies when new C code segments are inserted the subsequent numbers
change, so the parameter numbers must also change. Therefore, to reduce

potential errors, with respect to proper numbering, modification of

productions should be kept to a minimum.

DI A SO S S LA S LR AT I AL AR AT AL
AT A N S R IRIC 0 AN N A ACACALANO NN S

h

L s A A i



o

&é} In summary, completing the Design-File Problem not only provided the
analyzer with its first semantic capabilities but also influenced future
design decisions by:

. establishing basic relationships between VHDL and VIA.

2. realizing that for any particular subproblem the principal focus is on a
specified subset of VHDL. These subsets must be viewed in the context of the
closely associated VHDL statements (such as the architectural bodies
association to the block statement.)

3. identifying the need for consistency in the design of code generation
routines.

4. acquiring a firm understanding of the YACC interface.
e Major Design Decisions.

The basic approach used for the Design-File Problem was applied to the
other subset problems which were completed. The incremental approach to
designing the language analyzer surfaced many design decisions. Since
defining each of these design decisions would once again overendow the
reader with details, a representative set of major design decisions is
presented. These decisions include:

1. Extend the design of the symbol table.

2. Create VIA generation routines based upon attributes.
3. Establish parser interfaces for all subsets.

4. Create and use abstract data types.

Each of these decisions is described in the following paragraphs.

A

412

| At A . i e L e et e mle cel
A )% -‘p'\.(\'.' (s'\..-. LT PRI, YA .x\'.*\‘.* ~

A% ' S -. “ ~
“-."l‘, AL SERUKE e W TN . Y A L - f.‘.'P f\' .\\f M

\'\ > \(



£ Y
%

Extend the design of the symbol table. Although Schreiner's and
Friedman's symbol table was useful for the Design-File Problem, their simple

symbol table did not support the various VHDL symbol types or scope

- -

requirements. As discussed in Chapter 3, Schreiner’'s and Friedman's symbol
table was extended to support direct, indirect, and inherited visibility. The
symbol table was also extended to support VHDL type and subtype definitions,
all variables, signals, and literals (i.e., decimal-literals, based-literals,
abstract-literals, character-strings, and bit-strings). As new symbo!
characteristics were discovered, new fields were added to the symbol table.
Since the language analyzer is a prototype, the symbol tables’ data structure
was not optimized because, as stated in Chapter 1, this thesis project

emphasized function, with performance as a secondary goal.

Create VIA generation routines based upon attributes. In solving the

Design-File Problem, the symbol table was used to store directed acyclic s
graph (DAG) information which is represented by the VIA records. As the

research progressed, the author realized that although the symbol table

stores VIA information which directly relates to a symbol (i.e., name,

descriptive characteristics and record location), the vertices in the symbol

tables’ linked lists do not correspond one-to-one to the vertices in the VIA

DAG. Many VIA records are printed without a name, yet only those records

with names could be represented in the symbol table. Additionally, most

attributes in a VIA record are pointers to other VIA records. Therefore, the

data type atir/bute, alinked list representing partial DAGs, was created and

used by the VIA generation routines.




- ; e v

'5';,; lish parser interfaces for all subsets. The implementation
transition from the Context-Clause Problem to the Declarations Problem
required interfaces for the new parser actions. When these interfaces were
added to the parser, YACC did not produce an error-free parser. Upon
investigation, some declaration grammar rules were used by expressions.
Since expressions were targeted for a later subset, the impact of the
interfaces on the expressions subset was not considered during the design of
the Declarations Problem. To resolve this interface problem (and future

problems of a similar nature) the YACC VHDL source description file was

changed to include stubbed interfaces for every production in the source

description. Stubbed interfaces are function calls to functions which have
names identical to the production names. These functions, when initially
a written, included one parameter for each production data item available,
printed a "production not implemented” statement, and returned a null value.
These stubbed interfaces not only allowed YACC to produce an error-free
parser, but also reduced future changes to YACC's VHDL description, and

thereby reduced overall development time.

Create and use abstract data types. The term abséract data type is

defined (e.q, Fairley, 1985: 96) as a data structure and its associated
operators (i.e., functions and procedures). By creating and using abstract
data types with their associated operators, the implementation details of the
data structures are separated from the implementation details of the program
flow and thereby facilitate information hiding principles. Three abstract
data types.were defined: symbol table, attribute table, and group. Each of

these abstract data types is defined in the next section.

C NN R e ) e ‘i\\\
v

N SN A NN I A



b@f

....

Language Analyzer Detailed Design.

The dataflow diagram for the language analyzer which evolved during the
design process is depicted in Figure 44. This dataflow diagram presents six
high-level data transformations: get tokens, find next state, process actions,

process symbol table, process attribute table, and build groups.

Get Tokens. Get tokens is the process of lexical analysis by which LEX
(Lesk and Schmidt, 1978) identifies fokens (such as keywords, identifiers,
literals, punctuation marks and operator symbols) from a VHDL source code
file. These tokens are in turn used for two other processes (find next state
and process symbols) which will be described later. The basic get token
process consists of scanning the input file (one character at a time) to match
the longest pattern which describes a token. The pattern for a keyword token
is a proper subpattern of the pattern for an identifier token; therefore, these
are selectively differentiated by a binary table lookup process. The token is
compared to the entries ir. a reserved word table containing a complete list of
VHDL keywords. When the token is found in the table, the token is considered
a keyword; otherwise, it is assumed to be an identifier. All tokens are passed
to the 7ind next state task, while only identifiers and literals are passed to

the process symbo/s task.

Find Next State. F/ndnext state is the parsing process by which YACC

(Johnson, 1978) determines the next production state based upon the current

production state and the token received from the get token task This




information

LEGEND \
O attribute

Process table

—» Data flow VIA files

—— File

Figure 4.4 High-level Dataflow Diagram of the Language Analyzer.

process is automatically generated by YACC based upon a set of VHDL
productions which are similar to the grammar rules listed in the VHDL
Language Reference Manual (Intermetrics, 1985a). Associated with each

production is a production name and a set of actions which are executed upon




|

‘ 0y
| %‘ recognition of the production. Upon recognizing a particular production, the
current state information (e.g., identifiers used in the production, and
keywords like STATIC, ATOMIC and so forth) is passed to the process actions

task for appropriate resolution of the action.

Process Actions. AProcess actions is a conglomerate task with multiple
subtasks. Each subtask has a unique name which corresponds to one
production name in the //nd next state process. Each subtask performs a set
of actions based upon the production specifications in the VHDL Language
Reference Manual (Intermetrics, 1985a). These actions are primarily contro!
actions which monitor the symbol table processing and attribute tabie
processing, yet occasionally these actions group together symbol table and

ﬁ attribute table information. The symbol table is an abstract data type used to
maintain characteristics of identifiers and literals, while the attribute table
is an abstract data type used to maintain characteristics of a directed
acyclic graph (DAG) represented by the VIA records. Both abstract data types

are discussed in the next two sections.

Process Symbol Table. AProcess symbo/ table s a set of tasks
associated with maintaining the abstract data type symbol table. The symbo!
table consists of two different objects (symbols and vislinks) and three
classes of operations (constructors, mutators, and observers) Each VHDL
identifier and literal (i.e., constants, strings and so forth) is assigned to a
unique symbol. Additionally, any identifier used in a VHDL context c/ause is
assigned to a unique vislink, which defines the scope of a symbol's external

'i::gﬁ* visibility. These symbols and vislinks are linked together as described in

- - .- S - . - 04 e e te IR I I T SRR LI AL PSR I JPO S ) AT AP - y
T I S T T T T G S S R I G U N RIS AR A SO A S AN



........

CREREY R RS

@ Chapter 3. Each symbol contains characteristics which describe how the
symbol is used in VHDL, how the symbol is linked into the symbol table, and .
how the symbol was used in VIA. The information associated with the VHDL ‘
usage consists of characteristics such as name, type (i.e.,, ARCH, CONF, PORT,
516G, VAR), value (i.e., values associated with VHDL type definitions, and
constants), variable type, signal type, and so forth. The information
associated with the symbol table linkage consists of characteristics such as
next symbol, last symbol, next design entity (i.e., any symbol derived from an

architecture, configuration, package, interface, or subprogram name), last

- e W

design entity, use links (i.e., symbols which were declared in a VHOL use
clause), with links (i.e., symbols which were declared in a VHOL w/¢/ c/ause) !
and so forth. The information associated with the VIA usage consists of
ﬁ characteristics such as complete_bit (i.e., a flag indicating a symbol was
i completely defined), static (i.e, a flag indicating a static signal), duration p.

(i.e., an indicator showing how long a signal is available), and so forth.

All of these characteristics are manipulated by a set of operations
consisting of constructors, mutators and observers (Fairley, 1985: 98).
Constructors are those operations which create the symbols or vislinks, such
as s_create which creates a symbol. Mutators are those operations which v
alter the contents of symbols or vislinks, such as remove_vis/ink which ;
removes a particular vislink. Finally, observers are those operations which

retrieve information from the symbol table without modification, such as

Ss_/ind which finds a particular symbo.

L)
B S A L o D ot o L P g A o S et o T




m Process Attribute. Arocess atiribute table is a set of tasks associated
with maintaining the abstract data type attribute table and with generating
the attributes associated with the VIA DAG. The attribute table consists of
one object, called an attribute, and the same three classes of operations

associated with the symbol table. As depicted in Figure 4.5, the attribute
table is a simple linked list. Each attribute contains a pointer to the next

attribute, a record type identification, and a record number. The record type
identification and the record number are integers which represent the
record_lype_name and the record_number for the VIA record which was

printed when the attribute was created.

The attribute table is essentially an ordered linked list with the most
6 recently printed VIA record at the front of the list. VIA records are printed
in 3 hierarchical order, with the lowest level printed first. At the time VIA
records are printed the attributes are entered into the attribute table. They
are preserved in the attribute table until all other VIA records which
reference them are printed. For example, when a sing/e_value record is
printed, an attribute is entered into the attribute table. This attribute is
maintained in the attribute table until both a datar/ow_mode/ record and a
gatariow_/ink record are printed and their respective attributes are entered
into the attribute table. At that time, the attribute for the original H
single_value record is no longer required and is therefore removed. b
Additionally, when a VIA record is printed with the field_name name, the
symbol table routine wpdate_where enters the record number into the symbotl
table. This allow VIA records which are associated with a VHDL identifier or

ﬂg‘ constant to be referenced after the attribute has been removed from the

419

T AT "R n” LRI MR LR ST .“" " A e e e e e T e e, N
S A TN A S A B A o R N W SN ALV MR AR NN FE LI AN




B'e ]
Y
{]

type -- the type of record printed

type | num | next num -- the number of the record

L next -- the next attribute in the list

type [num | next

LEGEND type [num | next :
(IO Attribute —1—¥®»NULL ]
—p Pointer N

Figure 45: Attribute Abstract Data Type.

attribute list.

P | .

Build Groups Buiid groups is the process of associating a specific
symbol table entry and attribute table entry together. YACC allows oniy one
data type per production. Yet the actions for particular productions require
the information from both the symbol table and the attribute table. To avoid
the use of global variables, and to preserve the definition of an abstract data

o~ e -'ee )

type during implementation, a third abstract data type called a group was
developed. The group data type is a simple one node data type which contains

a pointer to a symbol table entry and a pointer to an attribute table entry as

AT AL

depicted in Figure 46 The group data type’'s sole purpose is to fulfill YACC's
@ one-data-type-per-production requirement. Therefore, the Lui/d group

process consists of the operations which can be performed upon the data type

AU AY

420

e o’ e e ™ eV a” "¢ e e Fo R P L R A I AP AT AR A N S AL AN SRR
N Tl TS L A ST A T AR 5 48 e TS A T A S O S A R R R R AL SRR RIS L

) A . 2 3



/ AN

Y/ N

attribute

Figure 4.6: Group Abstract Data Type.

group: create a group, delete a group, get a symbol table pointer, and get an
attribute table pointer. Create_grouyp allocates memory for the abstract data
type and updates the associated pointers. Ffree_groyp frees memory.
cet_symbo/ retrieves the groups symbol table pointer, while gel_attribute

retrieves the attribute table pointer.

Summary.

This chapter discussed the basic methodology for three of the five
remaining subtasks discussed in Chapter 1. These subtasks were to create
detailed examples, to determine design changes bases upon those detailed

examples, and to implement the design changes. The design work associated

with the Design-File Problem was discussed to explain the types of design




®

Rt e SLa o

decisions associated with the three subtasks. The solution to the Design-File
Problem recognized the semantic shells for VHDL's architecture bodies,
configuration bodies, packages, interfaces, and subprograms, and produced the
VIA records describing those constructs. The completion of the Design-File
Problem influenced future design decisions by establishing the degree of
complexity associated with determining VHDL-to~VIA relationships and with

implementing those relationships.

After discussing the Design-File Problem, this chapter described several
fundamental design decisions derived from processing other VHDL subsets
were discussed. Extend the design of the symbol table and create VIA
generation routine were among these decisions. The design of the basic
software modules for processing the symbol table, processing the attribute
table, and building groups were discussed. These software modules, coupled
with established interfaces for each parser action, provide a firm foundation
for continued design work. The next chapter discusses testing of these
software modules. The test results demonstrate that the modules work as

designed, and therefore reduce future testing complexity.

422

. W .

R N N N R L N T N

V\ \'\



:
% V. Analysis
Overview. -

The language analyzer's detailed design, as presented in Chapter 4, was :
selected to fulfill the eight system requirements listed in Chapter 3. These
system requirements were 1) to embed the language analyzer in the UNIX
environment; 2) to support a wide range of VHDL design tools; 3) to analyze

the syntax and semantics of VHDL; 4) to emphasize user friendliness; 5) to E
facilitate ease of maintenance; 6) to process a 1000-line input file within v
three minutes of CPU time; 7) to analyze one input file per execution of the %
language analyzer; and 8) to reduce output file size. To assure these system E
. requirements were fulfilled, individual test requirements were derived to f
‘ verify the design implementation. Based upon the test requirements, specific s,
tests were selected and performed. This chapter presents the test E
requirements and examples of particular tests with their associated results.

Test Requirements.
The language analyzer's design implementation was to be considered %

correct and complete when the language analyzer successfully satisfied the

v -
b )

following test requirements:

1. Analyze arepresentative sample of arbitrary VHDL source code files.
2. Analyze a single 1000-1ine VHDL source code file within three CPU
minutes on a VAX-class machine.

-

A ARSI

% 3. Create valid VIA file contents for representative sample sets.
P,

N
A
o
)
o
)

PUIRTATIE NI 0 J T R
AT NN AN A AR CSRNRY ‘s

5.1

. %



% 4. Produce valid error and warning messages for representative sample
sets.
5. Operate within the UNIX environment.

One other test requirement was considered, but not included: the requirement
to interface with other VHDL tools in the AVE. As mentioned in Chapter 1,
four VHDL tools (a VHDL code checker, 3 microcode compiler, a software
simulator, and a simulator generator) were scheduled to be developed in
parallel with the 1anguage analyzer. Of these four tools, the microcode
compiler, the software simulator, and the simulator generator were des/gned
in parallel; yet, their implementations were delayed enough that testing of
the actual interface could not be accomplished within the schedule of this
6 project. Therefore, interfacing was not included as a requirement for the

prototype language analyzer.
Each selected test requirement is discussed below.

1. i Vv fil

The ability to analyze an arbitrary VHDL source code file partially fulfills
three system requirements: to embed the 1anguage analyzer in the UNIX
environment, to emphasize user friendliness, and to analyze one input file per
execution of the language analyzer. UNIX software products are generally
allowed to receive input from any arbitrary file or group of files. Although
for the purposes of this project the language analyzer was restricted to one
input file, allowing this to be an arbitrary file was consistent with UNIX

conventions, and, therefore, presumably user friendly. In particular, the user

5.2

e P . . ot a e o R .o . - JR— . N 4
"y Y] %] P RS ) A\ A PR AREEO IS FOVATE T 1O U NEIIR P LR D DAL S WA T AT T A L S A LY
o hl‘ (AL A R0 Y ) u',‘\“ AWt A ax Al Y , .Q AT S Wt o+, o -) 0 . L ‘ ‘ Sa ’ Na p A o '\.‘ o Py oD < ()



e e

B 0

rl'.['\“"

is not required to learn new techniques for handling input files.

2. Analyze a single 1000-1ine VHOL source code file within three CPY
minytes on 3 VAX-class machine. The analysis of a single 1000~line VHDL
source code file within three CPU minutes was directly stated as a system
requirement. As indicated in Chapter 1, this requirement was established to
provide a minimal acceptable performance baseline for the prototype language

analyzer.

3. Create valid VIA file contents for representative sample sets. The
requirement to create valid VIA file contents was derived from two system

requirements: to support a wide range of VHDL design tools; and to analyze
the syntax and semantics of VHDL. The V1A file generated by the analysis of
the syntax and semantics of VHDL must be correct as specified in Appendix B.

4. Produce valid error and warning messages for representative sample
sets. Producing valid messages is a test requirement derived from three
system requirements: to analyze the syntax and semantics of VHDL, to
emphasize user friendliness, and to facilitate ease of maintenance. If input
file contents are incorrect, then specific, concise error or warning messages
are generated by the language analyzer.

S. Qperate within the UNIX environment. This test requirement follows
directly from the system requirement to embed the 1anguage analyzer in the

UNIX environment. In addition to following UNIX input conventions (discussed

earlier), the language analyzer fulfills this requirement by permitting

5.3

ARG ¢_'.".-‘-\-‘_.ﬁ\.'\f.b.‘: (,’.-: OO LN R A P 4



5‘ I I3
@' multiple users to simultaneously execute the analyzer.

Pl N

Method of Evaluation.

According to Fairley (Fairley, 1985: 184-185), four classes of tests
should be performed on any software product. /unctional, performance, stress, {
and structural tests. Functional tests verify post-conditions based upon a !
selected set of pre-conditions (i.e., including conditions “inside, on, and just '
beyond the functional boundaries” (Fairley, 1985: 271). Performance tests
verify particular interactions of the software product with its environment. v
Stress tests attempt to overload a system and its environment in order to

establish operational }imits and failure reasons. Finally, structural tests

6 verify internal program logic, assuring each logical path within the code '
functions correctly. Of these four classes of tests, formal test cases were ]
established for functional and performance tests. Test cases for stress and

structural tests were not formally specified for the reasons discussed below.

Eunctional tests. For the reasons discussed in Chapter 1, functional

testing was given the highest priority among the various test classes. Prior

VAT

to designing program modules for each subproblem (see Chapter 4), a

representative set of functional test cases was developed. For each test

PR A s I

case, VHDL source code was written and expected results were predicted for
comparison with analyzer output. Two kinds of test cases were developed:

single and multiple grammar rule tests. The single grammar rule test cases

contained VHDL source code to demonstrate one particular aspect of the VHDL '
@ grammar subset under consideration. By limiting test input to exhibit one
S.4
A O 2, B A N T T A A N R e 0 NS R AN AN e




grammar rule, the expected results were more easily verified. With the

multiple grammar rule test cases, various combinations of the grammar rules

were created to assure the results were not affected by second-order effects.

By selecting test cases in this manner, the grammar rules from a previous

subset could be used in the test cases for a current subset with a degree of

confidence that the expected results from the previous subset would be N
stable. The test cases making up this representative sample set appear in

Appendix C. ,

Performance tests. For the reasons discussed in Chapter 1, performance
testing was given a low priority, although formal test cases were selected to
demonstrate the prototype l1anguage analyzer performance characteristics. :
The original design goal projected the analyzer would execute a
representative 1000-1ine VHDL source code in less than three CPU minutes on
a VAX class machine. Since the prototype language analyzer processes only a
portion of the VHDL language, test were created to determine the performance
based upon the implemented subsets. These tests consisted of analyzing the
VHDL source code files under normal operating conditions of the AFIT host
UNIX environment. Run time data for ten test iterations of four sets of VHOL
code was gathered and statistically evaluated to determine the mean
execution time and standard deviation. Based upon these results, projections

for the completed prototype language analyzer are presented.

Stress tests Stress testing was given a low priority in order to ‘
minimize the level of -effort associated with testing the language analyzer

within a fixed length of development time. (As stated in Chapter 1, the




;ﬁ primary emphasis of this research endeavor was to establish a functionally
| correct prototype language analyzer with performance, including stress
‘ performance, as a secondary consideration.) To establish that the language
analyzer would not fail in an operational environment, however, students of
two AFIT Computer Architecture classes were assigned homework which :
required developing VHDL source descriptions which were processed by the
language analyzer. This informal testing provided stress test coverage

adequate for the purposes of this project.

Structural tests. Structural testing was given a low priority for two ;
reasons. First, structural tests are designed to test a program’s logic paths,
thereby assuring each statement operates as intended. !n most cases, the
same result can be derived during functional testing, given that the inputs for :
ﬁ the functional tests are carefully selected to achieve this goal. Second, the
language analyzer is a prototype. As a prototype, the 1anguage analyzer's code
is subject to change as the development progresses. Therefore, provided the
language analyzer passes the functional tests (which demonstrates working
code), the potential time spent on performing structural tests could be used
for continued design work, although some modules were selected for
structural testing based upon the complexity of the module and upon how
frequently the module was used by other program modules. For instance, the
attribute modules which processed VIA attributes and wrote VIA records
were structurally tested because approximately 75 percent of the action

modules call the attribute modules.

v e .
, Ce e .
AR N T e

s ataey
LA



Once a program module passed a structural test, the module was
considered correct, and that module was used to test other program modules.
Such a bottom-up approach to structural testing allowed composite program
modules to be tested without physically modifying them or writing additional

test routines.

Evaluation of the VHDL Language Analyzer.

The evaluation of the language analyzer consisted of the four classes of
tests previously mentioned. The description of the test, the test conditions,
and an evaluation of the test results are presented below for the tests in each

class.

Functional tests. A representative set of functional test cases was
created to verify that the language analyzer was consistent with the language
reference manual (Intermetrics, 1985a). The functional test cases were
similar in format, varying only with the exact input and expected output.
Therefore, one specific example will be discussed, although the other tests
appear in Appendix C. The particular example selected for discussion is
depicted in Figure 5.1, "A Single Grammar Rule Test™. For this test, the VHDL
source code displayed at the top of the figure was the input data, while the
VIA representation at the bottom of the figure was the expected result. To
perform the test, the command

vhd! test_proc_1

was issued from the UNIX command line. g/ is the name of the executable

file for the 1anguage analyzer, and fest_proc./ is the file containing the

h

TR P P P




VHDL Source Code:

procedure PROCEDURE_NAME /s
begin
null;
end ;

Enhanced DDS:

component:
package: NULL
| undefined: NULL
root: NULL

viatabie

name: PROCEDURE_NAME
complete_bit: false
operational_binding: NULL
datafiow_model: NULL
timing_model: NULL
structural_model: NULL
instantiate_and_merge: NULL
extends: NULL

component

VIA Representation:

0 via_table ( component = 1 ;)
1 component ( name = PROCEDURE_NAME ; complete_bit = false ;)

Figure 5.1: Procedure Test Case.

5.8

T R N R N ;., .-.(. S, .‘_‘.(:ﬁ; ._: ‘.w‘.‘.f-.!_\’\ :'.:'I‘.'I"'(\J‘-'-'\-'*‘\-':";'-'\-'\.r"? \‘..{\. -
R L N N . )



% VHDL code displayed in Figure S.1. The test creates three files { v/atav/e,
vigpack, and viatemp), which when concatenated together, create the via.vhdl
file discussed in Appendix B. The contents of the files were manually
compared to the expected results as shown in the figure. In this case, the
test results were exactly as depicted in Figure S.1.

With some tests, however, the expected resuits varied from the actual
results in one of three acceptable ways. First, the specific record numbers
assigned to each record in the actual results might differ from those assigned
in the expected results. Since record number assignments are arbitrary,
provided the specific record numbers were unique, the test was deemed
successful. Similarly, the order in which the records appeared was deemed
insignificant, provided the record numbers were unique Third, the actual
resuits might reflect the contents of the expected resuits in more than one
actual record through the use of the extends attribute The extends attribute
hinks two records together a or/may ~ecord (which Can be any VIA recors
type) and an extend record (which 1s arecord of the same type as the primary
record) The extend record points to the primary record though the extend
attribute Basically, the extend record is a continuation (or extension) of the
primary record Therefore, the test was considered successful provided the
union of the information in the actual results mapped into the contents of the

expected results

Performance tests Four sets of VHDL code were analyzed ten times by

the language analyzer These tests were performed under normal operating

condition of the AFIT UNIX environment To perform these tests a UNIX shell




% was written to repetitively execute the statement
time vhdl <filename>
The command ¢/me is a UNIX utility which reports elapsed time, user
execution time, and system time (AT&T, 1986); whg/ is the name of the
executable file for the 1anguage analyzer; and ///ename is the name of the
file containing the VHDL source code. Table S.1 reflects the raw data
gathered from these tests, and Table 5.2 reflects the mean and standard
deviation for the execution times. As the work progressed on the language
analyzer, the mean execution time increased from 0.64 to 1.03 CPU seconds.
d Both the execution times and the output file sizes grew rapidly, because the
third subset was the largest subset implemented. The first subset, the ‘
Design-File problem, processed six production rules (i.e., definitions YACC 'i
uses to create the parser); the second subset, the Context-File problem,
processed approximately 20 production rules; and the third subset, the
Declarations Problem, processed approximately 65 production rules. With
these first three subsets very few of the production rules were shared. Those
production rules which were used by more than one subset, were simple
productions like:
simple_name = Identifier,
whereas the third subset made a major contribution to future subset
implementation. The third subset processed approximately one third of the
246 productions used by YACC. Since the third subset language analyzer

performs over one-third of the expected total translation work, such a radical

increase in time and file sizes is justified. The original performance
projection for the completed language analyzer was to process a 1000-line

VHOL source file within three CPU minutes. Although the test cases did not

5.10

" e e’ T T T a® " AT e T " T Nt N T P AP L IR S P R N T T e e X
BROR N A ‘_\.'\' -"-"\f\(‘ I.'f'u-"."vl"\ \ \,\\ \ \ -. A SR AN \- S N .



‘ @ Test Input Subset Number
\ Number File Size 0 { 2 3 0 1 2 3 )
| User Time Output File Size
| (bytes/lines) (seconds) (bytes) ;
|
Al 2207/96 0.3 03 04 07 0 637 63713532
2 03 03 04 07
3 03 03 04 0.7
4 03 03 03 0.7 '
5 04 03 03 0.7
6 03 04 03 07
7 03 03 04 07
8 03 04 04 0.7
9 03 04 03 07
10 03 03 04 08 |
B 1 7978/293 14 14 14 21 0 1212 1208 18555 ;
2 15 1.3 15 21 a
3 15 14 14 20
4 12 14 15 21 '
S 15 14 15 20 .
6 1S 14 14 21
7 14 14 14 20
ﬁ 8 15 1.4 14 20
. 9 15 15 14 22
10 15 15 14 21 :
c1 3244/106 0S 04 0S 08 0 363 363 7542 ~
2 04 05 05 07 R
3 04 0S 05 0.7 .
4 0S 0S5 0S5 0.7 ;
S 05 05 05 07 '
6 04 03 05 07
7 04 0S5 05 07 4
8 04 04 05 08 ~
9 0S 04 0S5 08
10 04 05 05 0.7
D1 2392/83 04 04 04 06 0 311 311 7501
2 04 04 04 06
3 04 04 04 06
4 03 04 04 06
5 03 04 03 06
6 03 03 04 06 .
7 04 04 04 06 X
8 04 04 04 06 .
9 03 04 03 06 .
10 04 04 04 06 ‘
>
OR Table 5.1: Performance Test Raw Data

5N

4,-\ ~ o J,. R DIAT AN \.)\J,*.a\",-.‘,\ "-J_\J\‘.x"\:_\“_\‘_\:_\;_\;.'.;,'\.‘_-.:;.;_\',- .\.._\ N . .._-,'_". A ICAC NI N N

% ~ SRR



@ Test Subset Number 5
Number O | 2 3 0 1 2 3 .
Meen User Time Stenderd Devistion !
seconds seconds ]
A 031 033 036 0.70 003 005 005 000 ;l
B 145 141 143 207 009 005 005 006
C 044 04 050 0.73 005 007 000 0.05 b
D 036 039 038 0.60 005 003 004 000
064 065 067 103 047 045 045 061

Table 5.2: Execution Time Means and Standard Deviations

conform to this criterion, the potential for the final prototype language
analyzer to meet or exceed this criterion is good.

6 Stress tests. As stated earlier, stress tests were informal, and

therefore, specific test cases were not created. Rather, two AFIT Hardware
Architecture classes were assigned homework which required the students to
write VHDL descriptions of various hardware configurations. During the .
winter quarter of 1986, students were assigned the task of describing a
hardware system's port interconnections using configuration bodies (George,
1986). At the time of the assignment, the pre-prototype language analyzer ¢
was made available for student usage on the AFIT host UNIX’system. The ’
students were told the language analyzer processed VHDL syntax while
ignoring VHDL's semantics. They were asked to report any problems which 3
they discovered. All problems they found were attributed to learning a new :

language, and no problems associated with the language analyzer were

@ reported. The author had the opportunity to review selected examples of the
5.12 :
R Ay Y O T B S S T o I N I T e R R R S e R




students’ code. Of the examples, few would have passed the semantic checks

implemented in later releases of the analyzer.

During the summer quarter of 1986, students were assigned the task of
describing the behavior of a Reduced Instruction Set Processor (RISC) they
were designing as a class project (Linderman, 1986). This time the students
used a release of the 1anguage analyzer which recognized VHOL the semantic
shells. Once again no problems were reported. Yet this class assignment
tested a different set of VHOL syntax and the analyzer's initial semantic
capabilities.

Structural tests As discussed earlier, structural tests were created for
complex or critical program modules. One such group of program modules was
the attribute modules which generate VIA Basically, a program driver was
written to test the attribute program modules; then the driver was executed
using data which was selected to test every program statement. Most
attribute program modules have two inputs (a symbol table pointer and an
attribute table pointer). These programs call the symbol table routines to
retrieve information from the symbol table which is printed during the
creation of new VIA records. Also, these programs print the relationship of
the new record to the partial directed acyclic graph (DAG) represented by the
attribute table; then the new relationship is pasted to the DAG.

The structural tests showed the modules worked correctly with one

consistent exception. When both input parameters were null, the attribute

programs printed null records (i.e., records which had no field names and no




@ field values). These null records were printed because the statement which
checked this condition had been improperly formed.

Summary.

This chapter presented the specific test requirements, test methodology,
representative test cases, and an evaluation of the test resuilts. Four classes
of tests were presented: functional, performance, stress, and structural. Of

these four classes of tests, the functional and performance tests were

primarily used for the analysis. The emphasis was placed upon functional
testing throughout the incremental development, because the prototype
analyzer's first objective was function as discussed in Chapter | The

‘ performance test showed that the 1anguage analyzer was processing an
average of 4000 bytes (or 145 lines) of VHDL code in 1.03 CPU minutes. Since
the 1anguage analyzer is currently processing over one-third of VHOL
productions, the final prototype ianguage analyzer can be expected to meet
the initial performance objective of 1000 lines of VHDL code within three

CPU minutes.

S ete ac ..‘.._-...1.1-1
LA \i. 3 \':!\f""'ﬂt\ts'!‘{:‘



@, VI. Conclusions

Overview.

During this research, several conclusions were derived which not only
apply to VHDL Version 7.2 (the version of VHDL for which the language
analyzer was created), but also can be applied to the IEEE's enhanced VHDL
described in Chapter 1. This chapter summarizes those conclusions and,
based upon the conclusions, recommends six topics for future research
endeavors.

Principal Conclusions.

6 The research approach stated in Chapter | called for the selection of a
VHOL Intermediate Assess (VIA) format, selection of VHOL subsets,
identification of logical relationships between VIA and VHDL, design of the
lanquage analyzer, and evaluation of the language analyzer. The latter three
steps were applied iteratively on each subset throughout the project
development cycle. Although in general this was a successful approach, minor
setbacks were associated with the successes. These successes and setbacks

are discussed in the following paragraphs.

PP P Ry Sy e

1. election of VIA for the AFIT VHDL Environment Selecting a structure
for the intermediate files was the process of ana'yzing the VHDOL language to

A o8 5 Sl

determine a method for representing the content of a VHDL source program.
As explained in chapter 3, Design Data Structure (DDS) as presented by Knapp
and Parker of the University of Southern California (Knapp and Parker, 1984

,.
h
W

S
s

)

]
L7

ol

L
6.1 |
1
<

™, e

(9 Y N N P " AT TN B N\ "
A AN RO RN SN WO M R IS N RN NN A TR N X0



@3 9-27) was selected as the basis for the underlying structure of the VIA
format.

One reason for the selection of DDS was to allow the tools under parallel
development to have early access to complete circuit descriptions. However,
since the VIA definition was on the critical paths of the parallel projects, the

scope of those projects was changed, so that the critical path did not depend
upon the VIA definition. Nevertheless, VIA was considered for making the
tool builders’ respective design decisions.

2. Selection of the YHDL Subsets. Selection of the VHDL subsets to
implement was the process of classifying the language rules into groups of

‘ related rules. The rule subsets were ranked in the order of expected
implementation complexity. As each rule set was added to the analyzer, the
analyzer's capabilities expanded. Computer code was designed and tested to
validate the expanded capabilities.

This method of selecting subsets of the VHDL |anguage was a success.
It allowed early access to the intermediate files and enabled AFIT students to
test the early analyzer releases as part of their normal homework
assignments. In assuring that the early releases functioned properly, these
students also gained a better understanding of both VHDL and the software

verification process.

3. Identification of the Logical Relationship Between VIA and VHDL.
Identification of the logical relationship between the VIA and VHDL was the



process of determining how the semantics of the 1anguage are explicitly
represented in the intermediate form. The language subsets were iteratively
decomposed to provide examples of VHDL source code and the intermediate
form. The examples served as a guide for designing modules and formed the
test cases used for validation

Although this task initially seemed relatively simple, as the design work
progressed the task became complex and consumed more time than originally
projected. The complexity of the task increased as more capabilities were
added to the language analyzer, because VHDL and DDS have inherent
differences which cause inconsistencies in the way they handle structure and
behavior. For instance, VHOL's {pes can be assigned values through an
Initialize directive. DDS does not provide a consistent means of representing
these initialize values for types, because VHDL's /ypes are equivalent to
DDS's datarlow../ink records, which cannot acquire values. Dataflow_link
records can point to sing/e_val/ue records, but the single_value records were
used to represent the values associated with VHDL's &pe declarations (ie,,
enumeration types and so forth). This inconsistency, like many others, was
corrected by adding another field to the VIA file definition, and therefore,
VIA is based upon enhanced DDS.

Due to similar complexities, the task of defining the logical
VHDL-to-VIA relations required more time than originally expected. The task
is still ongoing and is expected to continue as the prototype language analyzer

expands into a production version based upon the IEEE's standardized VHDL.

b0 1 L o o o s € Gt S T e T A W S e T T T T T Y



.-

@ 4 Design Modules to Generate the intermediate Structure. Designing

modules to generate the intermediate structure was an iterative process of

e

determining the actions required for generating the intermediate files.

-,

Modules were designed to meet the semantic criteria specified in the VHDL
Language Reference Manual (intermetrics, 1985a), to interface with YACC
(Lesk and Schmidt, 1978), and to interface with a modified version of the
Schreiner’'s and Friedman’'s symbol table (Schreiner and Friedman, 1985).

The design process in conjunction with the previous two steps required

AR I

more time than was originally projected. Therefore, the scope of the project
was re-evaluated. The goal of impiementing all nine subsets within this v
project was changed to implementing three subsets. Although the goal
changed, the incremental development methodology was a success. By

ﬁ developing the design in increments, the author was able to design and b
implement a set of robust program modules based upon abstract data types.
These abstract data types are a set of data structures (i.e., symbol table,
attribute table, and groups) with their corresponding operators (i.e., functions
and procedures). The abstract data types allowed information hiding by
separating low-level program details from high-level functional details and
provided a large variety of functions and programs for implementing future .
VHOL subset capabilities.

5. Test and Evalyate the Lanquage Analyzer Testing and evaluating the

language analyzer was the process of executing the VHDL language analyzer, N
checking the results against the predicted results, verifying the expected .
‘,‘.E;‘.:? output, and determining run time performance. Four classes of tests were
’
6.4
R R A N A A SR A T A




@ performed: functional, performance, stress, and structural. Of these four 3
classes, functional testing was emphasized, because the project goals 3
emphasized function with performance as a secondary consideration. The E
performance tests indicated that as the development of the language ana'lyzer M
continues the prototype analyzer should meet the pro jebted goal of processing
a 1000-line input file within three CPU minutes. Performance tests also
showed that the output files are 2 to 6 times larger than the input files, and
therefore, the record-names and field-names in the file should probably be
shortened

Suggestions for Future Research

6 The current configuration of the VLS| tools at AFIT is an independent ‘
’ collection of automated tools which were developed at ~FIT, acquired from
other institutions, or purchased from industry. Among these tools are
applications such as SP/C£ (Viadimirescu and others, 1983) (a gate circuit
simulator), CALSAR (Ousterhout, 1983) (an interactive mask layout tool),

MEXTRA (Fitzpatrick,1983) (a circuit extractor), Y24 (Arnold, 1986) (a \
design ruie checker), and many more. Although some of the tools such as "
CAESAR and LYRA communicate though a common data format, many of them
require manual translation from one fixed format to another This f

v

"man-in-the-loop” is notorious for making costly mistakes which are

/

propagated through chip fabrication and discovered during chip testing. By
removing the man-in-the-loop, whenever feasible, and by adding additional

design tools to the AFIT VLSI design environment, many costly mistakes could

.
d

£iLn be eliminated.

NS
NN




s B A7 8. W% WV

35 The AVE is potentially the kernel of an integrated VLS! design
~ environment that would automate or make unnecessary such manual
transiations. This is so because VHDL is not only a simulation 1anguage, but
also a hardware description 1anguage which can be used throughout the design
cycle (from concept through testing). Also, the AVE must be highly integrated
to become useful for training VLS! students and for developing VLSI! chips

LR R PP IR

Currently, AVE is just another independent set of design tools (1.e, the
language analyzer, the software simulator, etc.) Yet, given sufficient
research time, the AVE could achieve full internal integration and
applications (such as CAESAR and SPICE) could be integrated into AVE though
VHDL. To achieve this result, the following research topics should be pursued.
1. Create a database manager with an associated database query ianguage ,
Integrate CAESAR and SPICE into AVE. :
Optimize the language analyzer's design and code. .
Create a linker for the language analyzer.

Create an automatic VHDL code generator.

o VoA W N

Create an automatic floor planner.

Each of these research topics is discussed below. ~

1 r with 1 a e an

A database manager with an associated database query language for the AVE

P RS

environment would potentially solve two problems. First, a database manager
would provide a means of controlling design files. Although the emphasis on
such a database manager would be to control VHDL and VIA files, a secondary

goal would be to support other files, such as CAESAR and SPICE files. Second,

- "
I‘l.
s

3 database query language would eliminate the need for each tool in the AVE K

2
S

6~6 -

'v‘,-‘v-



T

Nl
e

“af N

to contain routines for traversing ViA's directed acyclic graph (DAG).
Although VIA was selected as an intermediate form because of its simple
abstract subspaces, traversing the VIA DAG is a semi-complicated process
which should be transparent to most tools. Additionally, the author
speculates that many tools will not require information from all VIA
subspaces,; yet, without a database query 1anguage, the tools may be required
to traverse the entire graph to acquire information from one particular

subspace.

2 PICE i VE. integrating CAESAR and SPICE
into AVE through VIA would remove the "man-in-the-loop™ discussed earlier
In current practice, VHDL simulation models are developed independently from
SPICE's gate simulations and CAESAR’'s mask layouts. These products and/or
applications describe different aspects of the same chip circuitry under
development. in some cases, they even describe the same information from >
different perspective. For example, CAESAR specifies the coordinates of
various mask levels; from these coordinates, the lenqth and width of *n
transistors formed by the mask levels can be determined SPICE juec v
length and width of transistors to perform gate-level simuiat on- * w
deriving timing diagrams. The system requirements, such a< * ~ -
component hierarchy requirements, for a chip can be spe- ' « -

Although each of these applications require data :n a ~pe

common data structure such as VIA were used a< ar * "« ‘4 .

automated tools could be developed (1) to tranc 3« *

VHDL to the timing aspects of SPICE (' '~ w v

of VHDL (such as hierarchy) to the prv: v v ..

RS A




2/2
NL

OF ENGI. .
86 AFIT/GCE/NA/86D-1

(U> AIR FORCE INST OF TECH

AN INPLEMENTATION OF A LANGUARGE ANALYZER FOR THE VERY
DEC

HIGH SPEED INTEGRAT..
WRIGHT-PATTERSON AFB OH SCHOOL

78 648




) \

,-'T-iii-

aF
Q..
reEHE

EEE|
E

=

——
.—
4171

r
r
113

II

FEY Bl pues

-

~

Mir -
Na L

l

P

PR
ar

»,

-

§

W

o,

-
.,
o
'

-

L

2
i ,,'-l-

Fé
=

o~ “n -
"4- -h-;-._,s.( ‘-,.» A Y

v

r,‘gﬁ:}" e ',,s
\“\ .‘-

N



translate the physical aspects of CAESAR to the timing aspects in SPICE.
Admittedly, these translations are not simple and they may require human
intervention in the form of on-line interactive sessions. Yet, even an on-line
interactive session would reduce the potential of errors in omission,
caiculation, or transcription.

The current configuration of VIA supports dataflow, timing, and
structure descriptions. Although the VIA does not currently support physical
descriptions, the extension of VIA to include physical descriptions is easily
accomplished by defining and adding the VIA record formats to describe the
Design Data Structure (DDS) physical subspace. With respect to VHDL, there
exists a direct correlation between the structural subspace and the physical
subspace, so modifying the language analyzer to acknowledge the physical
subspace would be relatively simpie. Once the VIA physical subspace records
were defined, tools could be written to translate the timing subspace to a
SPICE shell and to transiate the physical subspace to a CAESAR shell. SPICE
and CAESAR require information not provided in VHDL. Therefore, to ensure
that VIA contains complete descriptions, tools could be written to extract
information from SPICE and CAESAR to store in VIA. The combination of
tools would ensure that all known information on a given design was stored in
one location, which would simplify the verification and validation process.

3. Optimize the Language Analyzer's Design and Code. As mentioned in
Chapter 1, the primary goal of this research endeavor was to produce a

functionally correct prototype 1anguage analyzer. Since this goal was
accomplished, a logical continuation would be to optimize the performance of

6.8




r‘@"

the prototype analyzer. Three principal research goals could be (1) reduce the
actual execution time from analyzing a single 1000-word source description
in three CPU minutes on a VAX-class machine to 30 CPU seconds or less; (2)
expand the 1anguage analyzer to allow multiple input files to be specified in
the command line; and (3) expand the language analyzer to create muitiple
output files which correspond by name to the multiple input files. The
optimization or near-optimization of the language analyzer would create a
product which AFIT could be prouder to distribute among other universities.

4 (Create a Linker for the Language Analyzer. A linker for the AVE

environment is required to logically connect VIA files which were analyzed
separately. The actual tasks associated with the linker would be similar to
any other language linker, with the exception that the linker would be working
with VIA files rather than machine language files. The linker would need to
perform the instantiate-and-merge actions, related to the VIA files, which
are described in Appendix B. Although the language analyzer currently
requires an entire description in one file, the linker coupled with the
previously discussed language analyzer enhancements would render a more
usable language anaiyzer for the AVE.

S. Create an automatic VHOL code generator. The author’s favorite

recommendation for future research is an automated VHDL code generator.
Like Ada, much of the code written for VHDL is to support user-defined data
abstractions (i.e., data types and associated operations which can be
performed using objects of those data types) and user-defined system design
hierarchy. The nature of both data abstractions and design hierarchy renders

6.9

RERTY y ’5(\‘5 "?\-j- )';:”-('- 7 WATSIN -.,“:(-. ‘» AT R ,'\f.‘ WAL, Py



them potentially good applications for graphical definitions. Ideally, the VLSI
designer would draw pictures (using rudimentary shapes such as boxes,
triangle, circles, ovals, arrows, lines, labels, etc. selected from a menu), then
these pictorial definitions would be transiated into basic VHDL shells in
which the designer would insert final program logic such as assignment
statements. The specific information in these shells would vary among
designs, but basically the structural information (such as that found in
architectural bodies, configuration bodies, component instantiations, type
definitions, and subprogram declarations) could be generated using the
graphical information. The graphical information coupled with the VHDL
source description would create the design documentation. Therefore, by
drawing pictures (which the designer would most likely do anyway) on a
screen, the designer would reduce the time needed to formulate design
documentation and to write VHOL source descriptions.

6. Create an automatic floor planner. VHDL (and therefore VIA) contains
sufficient hierarchy information to facilitate an automatic floor planner.

fhe basic hierarchical structure of a VHDL source description could be used
(at any phase of the design process) to evaluate and to create the basic floor
plan for the chip under development. With auxiliary information such as size
limitations, an automatic floor planner could heuristically generate a CAESAR
file based upon the information maintained in the associated VIA file. The
CAESAR file would contain basic cell definitions with no actual layer
definitions. The automatic floor planner coupled with the automatic code

A

generator would provide a complete set of source documentation for the

initial design reviews.




Summary.

Although continued work on the language analyzer is required to
encompass the entire VHDL language, the current prototype has already been
used for teaching AFIT students about VHDL. The language analyzer is the
first known C-based implementation which operates {n a UNIX environment.
Since the analyzer provides basic capabilities (such as the lexical analyzer,
parser, symbol table, message handler and so forth), several organizations
have already requested the source code from which they plan to build
production models. Therefore, this research project provided the first step
toward integrating the AFIT VLSI design environment and also design
environments at other institutions. As integration work continues, AFIT
students and faculty can provide valuable recommendations to the |EEE
community as the IEEE enters the acceptance stage of standardizing VHDL as
an industry-wide hardware description language.

PP .




&

A S » -
l““s“:‘\"- .’LK‘: [

Appendix A: Deviations from the VHDL LRM.

This appendix discusses the December 1986 language analyzer
implementation with respect to deviations from the VHDL Language Reference
Manual (LRM) (Intermetrics, 1985a). The prototype language analyzer's
capabilities cover approximately one-third of the language as defined in the
LRM. Therefore, to reduce redundant discussion, this appendix has been
organized to follow the LRM chapters. When functions listed in chapters or
major sections of the LRM were not implemented, the chapter/section
reference is provided along with the projected VHDL subset to which the
reference was scheduled. When the capabilities were partially implemented,
the appropriate justification is provided.

Chapter 1. Design Entities.
Implemented except for port lists. These are scheduled for the next
subset, exoressi/ons.

Chapter 2. Subprograms
Implemented except for parameter lists. These are scheduled for the
next subset, expressions.

Chapter 3. Packages.

implemented.

Chaoter 4 Types

implemented except for secondary_unit_declarations. They are
scheduled for the expressions subset.

AT IS P . L %) ‘. K 2 ., " AT R LT LS )_\!i'.\’\.‘v \)'. > W \-‘ T g '\.\-. AL Y
2.4 Wy W Uh 2%y ‘;.ki () \'. N .‘.,.. '. ", S, V) "' y . '. » h \ Ao ‘9» <

hr e e e e

AF SR~ o

Ealic ol R R R )



Chapter 5. Declarations.
Implemented except for interface lists and port lists which are
scheduled for the next subset, expressions.

Chaoter 6, Specifications and Directives.
implemented except for association lists and directives which are
scheduled for the express/onssubset.

Chapter 7. Names and Expressions.
Not implemented. Scheduled for the subset titled exoressions. The
only names implemented thus far are simple and indexed names.

Chapter 8. Statements.
Not implemented. Scheduled for the subsets titled sequent/a/
statements and concurrent statements.

Chapter 9. Scope and Visibility,

Implemented.

Chapter 10, Design Units and Their Analysis.

Implemented with three exceptions: revisions specifications are
ignored, the package sfandard is a library unit; and design entities are
analyzed in any order. These three aspects of VHDL are examples of
implementation dependencies recorded in the LRM which are required to
support the design 1ibrary and the design library manager. The AFIT VHDL
Environment has no design library or its manager; therefore, these




\ i\"

requirements were ignored for the prototype 1anguage analyzer. Additionally,
ignoring the order of analysis requirement made a more flexible design
environment.

Appendix A_Lexical Elements.

Implemented with two exceptions: reserved words must be lower
case, and identifiers are case-sensitive. According to an LRM note, “in some
attributes the identifier that appears after the apostrophe is identical to
some reserved words” (Intermetrics, 1985a: A-10). To implement this
capability either identifiers and reserved word needed to be case-sensitive or
syntax error recovery was required. Since case-sensitivity was the easiest
to implement, the author chose to differentiate the reserved words from
identifiers by using lower-case reserved words and case-sensitive
identifiers.

Appendix B Predefined Language Environment.
B.1 Predefined Attributes.
Not implemented. Scheduled for the subset titled concurrent

statements.

B.1_Predefined Types and Subtypes

implemented.

Aocpendix €. Syntax Summary.

Implemented without error recovery. Error recovery is a
desirable quality for a production model 1anguage analyzer, yet for the
prototype language analyzer the author felt the time should be spent on




% implementing other aspects of the language analyzer. Additionally, according
to the LRM, “If any error is detected while attempting to analyze a design
unit, then the attempted analysis is rejected...” (Intermetrics, 1985a: 10-3).

Appendix D. Glossary.
Not applicable. The glossary contains definitions.



Appendix B: VIA

Overview.

To assist in the creation of future AFIT VHDL Environment (AVE) design
tools, the VHDL Intermediate Access (VIA) file format is completely defined
in this appendix. The file format is explained without justification of the
rationale behind the decisions which led to the development of the VIA file
structure: the reader interested in this rationale should see Chapters 1 though

4 of the thesis. Supporting examples are provided in Appendix C.

This appendix presents four categories of information: an overview of
the VIA file structure, the component structure, the v/atab/e structure, and

detailed record definitions.

Overview of the VIA File Structure.

The VIA file structure is an alphanumeric pile format. The file consists
of one control record, the v/atab/e, followed by one or more VIA records. The
format for all records is the same:

record-number record-type-name ( field-name-1 = field-value-1; .. ;

field-name-n = field-value-n ;)

Each record starts on a new line with a positive integer record-number. The
record-number of the control record is always zero. The record-number is

followed by a space, then the record-type-name. The record-type-name

indicates the type of the record and establishes the valid field-names for




that record type. Following the record-type-name is a list of field-names and
field-values separated by semicolons and enclosed within parentheses. Only
those field-names are printed which have an established value that is not a

default value.

The equal symbol follows the field-name and a field-value follows the
equal symbol. Each field-name has at most one field-value. The field-value
is followed by a semicolon. A semicolon followed by a closing parenthesis
indicates the record is complete. Any white space within a record is a
delimiter, unless the white space is enclosed in either single or double

quotation marks. White space includes blanks, tabs, new lines, and so forth.

The Component Structure.

The graph in Figure B.1 represents the overali structure of the basic DAG
associated with an enhanced DDS component. The graph is composed of
labeled boxes, arrows, and labeled ovals. Each box in the graph represents a
record in the VIA notation with the 1abel inside the box being the
record-type-name. Associated with each box are attributes which acquire
values (see next section for valid attributes). In VIA notation the attributes
are called field-names and the acquired values are called field-values. The
boxes are interconnected by thin and wide arrows. These arrows imply
relationships between the source (parent) and destination (child) boxes. The
parent has an attribute whose value is the relationship. In VIA these

relationships are represented by record numbers. A relationship implies two

) KNSl FEFARMRAI ~“rFFTES. ]



b

Angoue Jo
UYL SINYONLS

4ayjoue jo
iyt yurod

Nt

40yjoue jo
AU Ao eyep

Rynue

1U8.484}1P © JO paoI8d
spJooeu fiusw 03} suejujod
pJoJeJ suo o0} J8juiod

pP40J8d

‘aN3931

_ ud wd
(eanyonays| ] mopserep [
Lspow {spows
/ dogyoue j0 Jayyoue jo
oW |rinonA)s opous Bupuny
wu ou N
(emonays MOy e ep /
A9 4000 yurod MNTA npownt sbuea spou
abus sbus #buis o bus qbus sibus
" Eianngy,. M | L
T T} ny b (opows (pow {opow
(eanjonays Buyuny Aoyeyep _—:33....“ Bupuny moyerep
1 suodwoo

VIA Record Hierarchy.

Figure B.1:

)

tar

B.3

s

W4

IV

4
Pl

Al A
o’
S

9K
A
hY

|
|
|
|
“
2

o

s )

PN

=%y S

\ \'.\"\

YR aP RN oW

Bal N

Sal,

AGANAT

)

AT

3

O



- - PO WwEryT v v"'-v'w-----u-—-‘---‘v.‘.".'-{"""-r‘-v-j

concepts: the child is actually part of the parent definition and the child
inherits the attributes of the parent. A thin arrow implies the attribute will

occur at most once, and a wide arrow implies the attribute can occur zero or

more times. If an attribute of a parent has multiple relationships with a
child, then a separate VIA record is created for each relationship. Although
children inherit attributes from the parent, they do not inherit attributes
from siblings (a parallel child). The arrow leading to iabeled ovals represents

arelationship with another component in exactly the same context.

The definition of each box with its associated attributes is discussed in
the section labeled "Detailed Record Definitions”, but first the structure of

the viatable is presented.

The VIATABLE Structure.

As mentioned earlier, the vigtable is the control record for the VIA file
(see Figure B.2). Ina ViA file, the viatable has the same structure as other
records. As acontrol record, the viatable provides essential information for
identifying top-level component records, package records, undefined symbol
records, and a root record. Top-level component records are those component
records which are derived from VHDL's architecture bodies, configuration
bodies, and independent subprograms; package records are derived from
VHDL's package declarations; undefined symbol records are derived from VHDL
identifiers which were not declared, and the root record is the logica! top of
the DDS directed acyclic graph (DAG). With this information, design tools in

the AVE can link between files and instantiate multiple copies of the

B.4




viatable = root

component undefined package

Figure B.2: VIATABLE Structure

enhanced DDS directed acyclic graph (DAG). To minimize memory
requirements, only one DAG is created for any one VHDL construct. Yet, in
many cases, VHDL requires instantiating copies of a particular VHDL design
entity (intermetrics, 1985a). Within the AVE, design tools have the
responsibility for this instantiation. The necessary information required to
instantiate coptes of a particular DDS DAG (a secondary DAG) is embedded as
instantiate_and_merge fields in that DAG (a primary DAG) which needs the
copies. The instantiate_ and_merge field provides the record number for the
logical top of the secondary DAG. A unique copy of all records subordinate to
the indicated record must be created, then the secondary DAG must be merged
into the primary DAG. This merger implies two types of actions must occur.

First, if both the primary and secondary DAGs begin with component records,

B.5




e

»

' L ¥
. ,.“ & ‘.n“‘.'i,t

ALY

then a new component record must be created to represent the union of the
two DAGs. The complete union includes merging the dataflow_model,
timing_model, and structural_model records of the two component records to
form new dataflow_model, timing_model and structural_model records.
Second, all records which point to the original copy of the secondary DAG
must be changed to point to the newly created DAG.

Any file which, in terms of DDS, describes a complete VHDL source
description of an electronic component will have a field-name called root!.
The value associated with root is the record number of the component record
which is the logical top of the entire DDS DAG. The root may instantiate any
other component in the viatable, but it will never itself be instantiated in the

resident file.

The linking between files and instantiation applies not only to the
components which describe hardware but also to components which describe
functions and procedures and to packages. The components which describe
functions and procedures are handled exactly as previously described. Yet, to
handle of components within a package, a linker or a design tool would need to
know which components were within which package. Therefore, the record
type package was created. The record type package contains a list of DDS
components described in a VHDL package. Even this handles only half the
problem; therefore, the record type wnge/ined was created to describe

undefined identifiers. The undefined record defines the context of an

1. If 8 linker is eventually crested for AVE, then the linker has the responsibility of remaving all
but one root from the multiple files.

B.6

el o ® LS N, "--,.' !\! -..\.' o 4.' \..'-'
Wy a.nlu l-l~l!l Y, b ‘$ 5

WR NI 2N IS KBS

1T e



@ identifier which was used but not defined in @ VHDL source description. When
possible it also explains where the definition is expected to be found. For
instance, it may state the identifier definition should be defined in a package

and give the package name.
Detailed Record Definitions.

Each record which can appear in a VIA file is defined in this section.
Each definition is composed of a record diagram, a record definition, and
attribute definitions. The diagram shows the record-type-name inscribed in a
box with a list of attributes extending to the right of the box. These
attributes are the exact field-names which will appear in a VIA file. The
attribute definitions explain the valid content of the field-values. At the risk
e of being redundant, each attribute for each record is defined with that record

because the attribute definitions vary slightly among the various records.




@ 1. component Record.

name
complete_bit
rati indin

| dataflow_model
component |timing_model

| structural_model
L instantiate _and_merge
| extends

‘ Figure B.3: component Record.

Record Definition: The component record is the top level record which
explains the construction of a hardware or a software entity. The attributes
point to the subspaces which describe the component through lower level

subspace definitions.
Attribute Definitions:

a. name is the name of the component.
Syntax: any valid VHDL identifier.
Occurs: at most once.

Default: NULL.

B.8

LT R TEE I3 » -5 PP

. - -y g = b L. B B I IR B R R i IR R S S P P ST P SR --.---'-—-—--.-.
R G Al s \gheh .5."1 LA -P ..«‘ -~\\q$a\, AN o, LN .’~ LRSI AL A



@ b. complete_Dbit indicates whether or not the VHDL description of the
component is complete. The complete_bit attribute will appear in the
component record whenever the description is not complete. Otherwise, the
description is assumed to be complete.

Syntax: true or false.
Occurs: at most once.

Default: true.

¢. structyral_model is a record number for the structural_model record
which describes the structural subspace of the component record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

d timing.model is a record number for the timing_model record which
describes the timing subspace of the component record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

e. dataflow_model is a record number for the dataflow_model record
which describes the dataflow subspace of the component record.
Syntax: positive integer or NULL.
Occurs: at most once.
Default: NULL.




% f. operational.binding is a record number for an operational_binding record
which describes a specific carrier-range-value or module-range-node
relationship for the component record.

Syntax: positive integer or NULL.
Occurs: zero or more times.
Default: NULL.

g instantiate_and._merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record
needs a unique copy of that DAG in order to complete the DAG associated with
the current record.
Syntax: positive integer or NULL.
6 Occurs: at most once.
Default: NULL.

h. extends is a record number for a previously printed record. Any record
which contains an extends attribute is a continuation record. The information
listed in such a record actually belongs to the record referenced by the
extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

3

.. - - - - " M - LIPS g’
2 T O N AT DD T RN



name

complete_bit

jhas_structural_dimension

has_sublink_constituent

dataflow instantiate_and_merge
link extends

| ﬁ Figure B.4 dataflow_link Record.

Record Definition: The dataflow_link record characterizes the shared
) value dependencies between (1) a value and a node of the same component, and

(2) values of two different components.

Attribute Definitions:

a. pame is the name of the dataflow_link.
Syntax: any valid VHDL identifier.
Occurs: at most once.

Default: NULL.

b. complete bit indicates whether or not the description of the
et dataflow_link is complete. The complete_bit attribute will appear in the



@ dataflow_link record when the description is not complete. Otherwise, the
description is assumed to be complete.
Syntax: true or false.

Occurs: at most once.

Default: true.
¢. has.structural._dimension is an integer indicating the size of the
dataflow_link.

Syntax: positive integer.
Occurs: at most once.
Default. O.

e d. has.sublink_constityent contains a record number for a single_value

record which describes a value associated with a datafiow_link.
Syntax: positive integer or NULL.
Occurs: zero or more times.
Default: NULL.

PN W

e. instantigte_and_merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record }
needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.
Occurs: at most once.
Default: NULL.

Lyt s

A WMAICERS. "a s 3.4 2.0 SRS B A AN




@ f. extends is a record number for a previously printed record. Any record
which contains an extends attribute is a continuation record. The information
listed in such a record actually belongs to the record referenced by the
extends attribute.

Syntax: positive integer or NULL.
Occurs: at most once.
Default: NULL.

3. dataflow_model Record:

name
, complete_bit *
ﬁ | function
has.structural_dimension
dataflow has_link_constituent
model has.model_constituent

instantiate_an erge
_extends

Figure B.5: dataflow_model Record.

Record Definition: The dataflow_model record is one of three subspace
records; it characterizes the behavior of a component. The dataflow_mode!

has two types of attributes which are explained at a iower level in the

o , , .
LAY hierarchy: nodes and values. Nodes represent a functional transformation,
B.13
o LY R ) R S G R S S L RGN R AL A A A A A AN 4 SN NN N NN N



while values represent the initial conditions and/or the results of a

&

functional transformation.

Attribute Definitions:

a. name is the name of the dataflow_model.
Syntax: any valid VHDL identifier.
Occurs: at most once.

Default: NULL.

b. complete_bit indicates whether or not the description of the
dataflow_model is complete. The complete_bit attribute will appear in the
dataflow_model record when the description is not complete. Otherwise, the
description is assumed to be complete.

ﬁ Syntax: true or false.

Occurs: at most once.

Default: true.

(o)

function indicates the purpose of the dataflow_model.
Syntax: character string.

Occurs: at most once.

Default: NULL.

d. has_stryctyral_dimension is an integer indicating the size of the
dataflow_model.

Syntax. positive integer.

a7 Occurs: at most once.

vy

-
- s an e

;

A FAAK]

TR LN TN e B
LAV AR DIV U 2%, LXK 04 (G GG




@ Default: O.

e. has.link_constityent contains a record number for a single_value record
which describe a value associated with the dataflow_model.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

f.  has.model_constityent contains a record number for a single_node !
record which describes a node associated with the dataflow_model.

) Syntax: positive integer or NULL.
Occurs. zero or more times.

6‘ Default: NULL.

g instantiate_and_merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

» needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax. positive integer or NULL.
Occurs at most once.
Defau'’.. NULL.

| h.  extends !s arecord number for a previously printed record. Any record

: which contains an extends attribute is a continuation record. The information

|
} listed in such a record actually belongs to the record referenced by the f

NN extends attribute.

i B.15

e Nt T TNy VL P S A R L P T L T . SR R Wl )
MR NN I 2l L ft e Tat i a At A A



@ Syntax: positive integer or NULL. .
Occurs: at most once.
Default: NULL.

- - e

4. dataflow_net Record:

= .} » S_A AR

subvalue_path
visibility_bit
|_datafiow_connection
in i n rge
extends

| T NN

dataflow
net

-~
¢

Figure B.6: dataflow_net Record.

Record Definition: The dataflow_net record binds together values of two

different component.

Attribute Definitions:
a. subvalye_path is arecord number for the record which describes one
aspect of a lower level decomposition of the single_value record which is the

o~ parent of the dataflow_net record.

7 Syntax: positive integer or NULL.

.
4 L4
b -A'.Ayi"..




% Occurs: at most once.
Default: NULL.

b. visibility. bit defines whether or not the values can be accessed by a
record in another subspace.

Syntax: true or false.

Occurs: at most once.

Default. false.

c. dataflow_connection contains a record number for a dataflow_pin record
which describes the interconnections for the datafiow network.
Syntax: positive integer or NULL.
6 Occurs: zero or more times.
Default: NULL.

d.  instantiate_and_merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record
needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

it WSS o et b dand o

Syntax: positive integer or NULL.
Occurs: at most once.
Default: NULL.

POT TP Re

e. extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

[/
A
Y

2
L/

listed in such a record actually belongs to the record referenced by the

B.17

-"\"\*\.",\.(‘.‘,\I‘-J-.’:.f\.P:.-.-.‘_'.(\-.I\__\':.{:.'_\'r-...-. e

-"'- S Pl T%, )Y . \),\ '."\‘W"\' I “v)\v\'\*:-'




2t

4 N 4

‘.

extends attribute.
Syntax: positive integer or NULL.
Occurs: at most once.
Default: NULL.

S. dataflow_pin Record:

subvalue_path

| single_node
instant iaf I
extends
dataflow
pin

Figure B.7. dataflow_pin Record.

Record Definition: The dataflow_pin record binds together a value and a

node of the same component.

Attribute Definitions:

a.  subvalye_path is arecord number for the single_value record which is
connected to the single_node.

Syntax: positive integer or NULL

I oy

v -




@

Occurs: at most once.
Default: NULL.

b. single.node contains a record number for the single_node record which
is connected to the single_value record listed in the subvalue_path attribute.
Syntax: positive integer or NULL.
Occurs: zero or more times.
Default: NULL.

c. instantigte_and_merge is a record number for the logical top of a
previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with
the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

d. extends is a record number for a previously printed record. Any record
which contains an extends attribute is a continuation record. The information
listed in such a record actually belongs to the record referenced by the
extends attribute.

Syntax: positive integer or NULL.

Occurs:. at most once.

Default: NULL. E
'r

LIRS

[/

R AS

RS e BN S S UNC SRR |
‘ A A A A N AR N FAERENE)
AU BN BV TN VA, 7% DAY :..L\_.&f.'ﬁ_.XJS ALY



6. operational.binding Record:

datafiow_path
_stryctyral_path
|_range path

operational kind of structural path
binding | instantiate and merge
|_extends

Figure B.8: Operational Binding Record.

Record Definition: "operational_binding [records] show the relationship
between an operation (or value), a structure, and a time interval”
(Afsarmanesh and others, 1985:31). Operational_binding records actually
point to carrier_value_range and module_node_range bindings discussed by

Afsarmanesh and others.

Attribute Definitions:
a. dataflow_path is a record number for either a single_value or
single_node record. The specific record type is identified by the
kind_of_dataflow_path attribute.

Syntax: positive integer or NULL

Occurs: once.




&

Default: NULL.

b. structural_path is a record number for either a single_carrier or
single_module record. The specific record type is identified by the
kind_of _structural_path attribute.

Syntax: positive integer or NULL.

Occurs: once.

Default. NULL.

c. [ange_path is a record number for a single_range record.
Syntax. positive integer or NULL.
Occurs: once.
Default: NULL.

d kind_of flow represents the type of the datafiow path.
Syntax: node or value.

Occurs: once.

Defauit: no default.

e. kind of_stryctyral _path represents the type of the structure path.

Syntax. module or carrier.
Occurs: once.

Default: no default.

. instantiate_and _merge 's a record number for the logical top of a

previously printed DAG (1.e, a group of related records). The current record

B 21




needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

g
which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

Syntax: positive integer or NULL.
Occurs: at most once.
Default: NULL.

extends is a record number for a previously printed record. Any record

extends attribute.

7.

Syntax. positive integer or NULL.
Occurs: at most once.
Default: NULL.

package Record:
name
component
dataflow_link
package

Figure B.9: Package Record.




Record Definition: The package record defines all lower level components
and dataflow_links which were specified within a VHDL package.

Attribute Definitions:

a. name is the name of the package.
Syntax: any valid VHDL package name.
Occurs: once.

Default. no default; all VHDL packages have names.

b. component is a record number for 2 component record.
Syntax: positive integer or NULL.
& Occurs: zero or more times.
Default: NULL.

c. dataflow_link is a record number for a dataflow_link record.
Syntax: positive integer or NULL.
Occurs: zero or more times.
Default. NULL.

B.23

\"-\"-‘\'\'\"‘_‘4“\-.\-~\\.~.-v. . . N e 'a\\?--,v.-.. '..’.‘:'.,. e
. t\.ﬁ.ﬁ.ﬁ.‘::::n.'f L}Lﬁﬁﬂi&‘_‘__x._l A-L{L(_ht\{.&ﬁ-t\'.ﬁ.‘\; YL LS

P g o~ o> 3y

[ A =

4 ] Y ¥FYT R ¥

| A

Tee Y



name

single
carrier

role

has_kind

structural_netlist

instantiate_and_merge

extends

Figure B.10: Single_Carrier Record.

Record Definition: The single_carrier record characterizes the path for the
results of a functional transformation.

Attribute Definitions:

a. name is the name of the single_carrier.

Syntax: any valid VHDL identifier.

Occurs: at most once.
Default: NULL.

b. role is an integer which represents the reference number for VHDL

arrays.

Syntax: integer or NULL.

. - ML IR S e
Ql’.' PSR S

B.24

P P 0 P S P

» M - r - .
3%, 2GR N SR SO SRS A SRR T Kt GG OF

SBASAGANAY, £, LG0T 2



% Occurs: at most once.
Default. NULL.

c. has.kind contains a record number for a structural_link record which is
described by a different component record (Afsarmanesh and others, 1985:
42).

Syntax: positive integer or NULL.

Occurs: at most once.
: Default: NULL.

d.  structural_netlist contains a record number for a structural_net record
: which describes the network for the single_carrier.
6 Syntax. positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

-

e. instantiate_and_merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

W T rG—

needs a unique copy of that DAG in order to complete the DAG associated with
the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default. NULL.

-

f. extends is arecord number for a previously printed record. Any record

'
55

! - which contains an extends attribute is a continuation record The information

-~
s .

.
»
o 8 A




@3 listed in such a record actually belongs to the record referenced by the
extends attribute.
Syntax: positive integer or NULL.
Occurs: at most once.
Default. NULL.

9. single.model Record:

name
has_kind
_intended.function
instanti n er

single | ‘_Q&.QDQS

"‘ module

Figure B.11 Single_Module Record.

Record Definition: The single_modyle record characterizes a location for

which a functional transformation occurs

Attribute Definitions:

a name s the name of the single_module

% Syntax any valid VHDL 1dentifier




S,

Vas

Occurs: at most once.
Default: NULL.

b. has_kind contains a record number for a structural_model record which
is described by a different component record (Afsarmanesh and others, 1985:
42).

Syntax. positive integer or NULL.

Occurs. at most once.

Default: NULL.

c. intended _function signifies the function performed “in the target design
as opposed to the function . as an isolated entity” (Afsarmanesh and others,
1985 42).

Syntax. character string.

Occurs: at most once.

Default. NULL.

d instantigte_and_merge is a record number for the logical top of a
previously printed DAG (i.e, a group of related records). The current record
needs a unique copy of that DAG in order to complete the DAG associated with
the current record.

Syntax: positive integer or NULL.

Occurs. at most once.

Default. NULL.

e extends 1s arecord number for a previously printed record Any record




@ which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the
extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

10. single_node Record:

name
has_kind
intended_function

6 Lin i n r
single

| extends
node

Figure B.12: Single_Node Record.

Record Definition: The gingle_node record characterizes a functional

transformation of a component’'s dataflow subspace.

o Attribute Definitions:
At
ot a  name is the name of the single_node.

B.28



&

Syntax: any valid VHDL function name, procedure name, attribute name,
or operator.
Occurs: once.

Default: no default.

b. has_kind contains a record number for a dataflow_model record which is
described by a different component record (Afsarmanesh and others, 1985:42).
Syntax: positive integer or NULL
Occurs: at most once.
Default: NULL.

c. intended._function signifies the function performed "in the target design
as opposed to the function ... as an isolated entity” (Afsarmanesh and others,
1985: 42).

Syntax: character string or NULL.

Occurs: at most once.

Default: NULL.

d. instantiate_and_merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record
needs a unique copy of that DAG in order to compliete the DAG associated with
the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default. NULL.




"'«éi& e. extends is arecord number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information
listed in such a record actually belongs to the record referenced by the
extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default. NULL.

11. single_point Record:

name

role
© sink
' source ‘
single subscript
point visibility_bit
has_kind

extends )

L o s i g

Figure B.13: Single_Point Record.

Record Definition: The single_point record characterizes the a specific
time an event or a functional transfermation occurs.

R Attribute Definitions:

B.30




RSy
’?,;;‘5

‘*'I"l

a  name is the name of the single_point.
Syntax: any valid VHDL identifier.
Occurs: at most once.

Default. NULL.

b. role indicates the relative position of the single_point with respect to
the start of a single_range.

Syntax: integer.

Occurs: at most once.

Default: zero.

c. sink is arecord number for the last single_range record which describes
the connectivity of the timing diagram.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

d. source is arecord number for the first single_range record which
describes the connectivity of the timing diagram.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

e  subscript is an number representing a specific iteration of a loop.
Syntax: positive integer or NULL.

Occurs. at most once.

B.31

\ . "‘ '\' hJ \"\ '(‘*.'.: J'“ﬂ'\."\"&¢;-¢‘-’ -) -(\J“nﬂq"\'.'\-(.:'l- -’.'\‘....\..r-' "‘f -‘,'\'_>-

Ce Ty v v W W

‘L L
- -

.Il({“-"



o
\i;o Default. NULL

f. visibility_bit defines whether or not the single_point record can be seen
directly.

Syntax: true or false
Occurs; at most once.

Default: false.

g has_kind contains a record number for a timing_link record which is
described by a different component record (Afsarmanesh and others, 1985:
42).
Syntax: positive integer or NULL.
ﬁ Occurs: at most once.
Default. NULL.

h. instantiate_and_merge is a record number for the logical top of a y
previously printed DAG (i.e., a group of related records). The current record
needs a unique copy of that DAG in order to complete the DAG associated with
the current record.
Syntax: positive integer or NULL.
Occurs: at most once.

Default: NULL.

i. extends is arecord number for a previously printed record. Any record

which contains an extends attribute 1s a continuation record. The information

“ars
)
,

listed in such a record actually belongs to the record referenced by the

B.32




@ extends attribute.
Syntax: positive integer or NULL.
Occurs: at most once.
Default: NULL.

: 12. single_range Record:
E name
predicate
has_kind
, | asynchronous_predicate
single instantiate_and_merge
range extends

-

L an an 5
S

Figure B.14: Single_Range Record.

Record Definition: The single_range record characterizes a timing range of

a component's timing subspace. 1

Attribute Definitions:
a. name is the name of the single_range.
Syntax: any valid VHDL identifier.
% Occurs: at most once.

B.33

L AR A B P PP DDAl Bdht ” ol NN

. . v B .y - ~ -, T et At At gVt g ..
RCAIGN (WA D AT AL WA NENEN et




AR

TN
s
N

ARG L Ul AT\

Default: NULL.

b. “predicates describes the conditions under which normal branching will
occur” (Afsarmanesh and others, 1985: 42-44).
Syntax: simple, alpha, omega, or_fork, and_fork, or and_join.

1) “simple points have one in-arc and one out-arc. These points
represent events.”

2) "alpha points have one out-arc and no in-arcs. These points
represent loop re-entry points. The out-arc must have an index subscription
as the loop is considered to be a (possibly infinite) set of instantiations of
the arc(s) between alpha and omega points.

3) “omeqa points have one in-arc and no out-arcs. The points
represent loop back jump points.” l

4) ‘“or.fork points have one in-arc and a number of out-arcs They

represent branch points. Each out-arc must have a predicate attached to it

describing the condition under which the arc is taken”
S) "and_fork points have a number of in-arcs and a single out-arc.
They represent points at which several disjoint executions paths merge.”
6) “and_.join points have a number of in-arcs and a single out-arc.
They represent co-end points.”
Occurs: once.

Default: simple.

c. has.kind contains a record number for a timing_model record which is
described by a different component model (Afsarmanesh and others, 1985
42).




RO

Syntax: positive integer or NULL

Occurs: at most once.
Default: NULL

d.  “asynchronous predicates describes the conditions under which branching
is not synchronized to a particular point in the time graph. (e.g., resets)"
(Afsarmanesh and others, 1985: 42).

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

e. Instantiate_and merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record
needs a unique copy of that DAG in order to complete the DAG associated with
the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

f. extends is arecord number for a previously printed record. Any record
which contains an extends attribute is a continuation record. The information
listed in such a record actually belongs to the record referenced by the
extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

B.35

Yy f, €q L L L P R L S I ST PR SR N U RO

Vgt ) Dl oS S S . . v . K LN .
g o U S e ry e e e N Tt e e e e e e w e gt e ..
o o e N A e e g g e e T




%

13. gingle_valye Record:

name

role

has_kInd
dataflow_netlist
single instantiate_and_merge
value extends

Figure B.1S: Single_Value Record.

Record Definition: The gingle_value record characterizes either the initia!
conditions or the results of a functional transformation of a component's
dataflow subspace.

Attribute Definitions:

a. name is the name of the single_value.
Syntax: any valid VHDL identifier or constant.
Occurs: at most once.
Default: NULL.

b. role is the index into a set of values which describe a dataflow_link.
Syntax: integer or NULL.




@ Occurs: at most once.
Default: NULL.

C. pas_kind contains a record number for a dataflow_link record which is
described by a different component model (Afsarmanesh and others, 198S:
42).

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

d. dataflow_netlist contains a record number for a dataflow_net record.
Syntax: positive integer or NULL.
6 Occurs: at most once.
Default: NULL.

e. instantiate_and_merge is a record number for the logical top of a
previously printed DAG (i.e., a group of related records). The current record
needs a unique copy of that DAG in order to complete the DAG associated with
the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

f. extends is arecord number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

R a&: \\ " \; ‘.' .". \‘.‘~.&\}\-..

|



&

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.
Default: NULL.

14. structural_link Record:

name

structural
link

complete bit

has_structural_dimension

persistence_storage_property

has_sublink_constituent

instantiate_and_merqe

extends

Figure B.16: Structural_link Record.

Record Definition: The structural_link record characterizes the shared

carrier dependencies between 1) a carrier and a module of the same

component and 2) carriers of two different components. Essentially, the

structural_link is a binding.

B.38

Bln b . -

Py T e e

S P S s AN L P S S A AL SRR



b Y A ad Y PR WY DWW ey e

Attribute Definitions:

a. name is the name of the structural_link.
Syntax: any valid VHDL identifier.
Occurs: at most once.

Default: NULL.

b. complete _bit indicates whether or not the description of the
structural_link is complete. The complete_bit attribute will appear in the
structural_link record when the description is not complete. Otherwise, the
description is assumed to be complete.

Syntax: true or false.

Occurs: at most once.

Default: true.

c. has.stryctural_dimension is an integer indicating the size of the
structural_link.

Syntax: integer.
Occurs: at most once.
Default. O.

d. persistence_storage_property describes the ability to store charge.

Under some circumstances charge storage can be used as a memory
mechanism.

Syntax: true or false.

Occurs: at most once.

Default: false.

B.39




—— e

- =

e. has.sublink_constityent contains a record number for a single_carrier

record which is described by a different structural_link.
Syntax: positive integer or NULL.
Occurs. at most once.
Default: NULL.

f. instantiate_and_merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record
needs a unique copy of that DAG in order to complete the DAG associated with
the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

g extends is a record number for a previously printed record. Any record
which contains an extends attribute is a continuation record. The information
listed in such a record actually belongs to the record referenced by the
extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default. NULL.

B.40

N .‘i" )

> 5w
AOURE O ASACACARN N AT AN

A S o

PR P ———




&

15. structural._model Record:

name
complete_bit

jstatic_storage_property

ha ructural_dimension
structural has_link_constituent

model h 1_constityent
| instantiate_and_merge
extends

Figure B.17: Structural_mode! Record.

Record Definition: The_structural_model record is one of three subspace
records, it characterizes the structure of a component. The structural_model
has two types of attributes which are explained at a lower level in the
hierarchy: modules and carriers. A module is similar to a block on a
schematic diagram indicating where a functional transformation occurs,
while a carrier is similar to a line on a schematic diagram indicating the path

for the results of a functional transformation.

Attribute Definitions:

a. name is the name of the structural_mode!.
Syntax: any valid VHDL identifier.
Occurs: at most once.
Default: NULL.

B.4!



P
R

)

- T Ny e W T TR

b. complete_bit indicates whether or not the description of the
structural_model is complete. The complete_bit attribute will appear in the
structural_model record when the description is not complete. Otherwise,
the description is assumed to be complete.

Syntax: true or false.

Occurs: at most once.

Default. true.

c. static_storage_property represents the modules ability to store a static
charge (i.e., registers). The model is assumed to not store a charge unless the

attribute is present in the structural_model record.
Syntax: true or false.
Cccurs. at most once.

Default: false.

d. has_structural_dimension is an integer indicating the size of the
structural_model.

Syntax: integer.
Occurs: at most once.
Default. 0.

e. has_link_constituent contains a record number for a single_carrier
record which is described by a structural_model.

Syntax: positive integer or NULL.

Occurs: at most once.

Default. NULL.

B.42




Y \:)

.’-.
s »
»

Wy T YT

f. has_model_constituent contains a record number for a single_module
record which is described by a structural_model.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

g instantiate_and_merge is a record number for the logical top of a
previously printed DAG (i.e., a group of related records). The current record
needs a unique copy of that DAG in order to complete the DAG associated with
the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

h. extends is a record number for a previously printed record. Any record
which contains an extends attribute is a continuation record. The information
listed in such a record actually belongs to the record referenced by the
extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

B.43




16. structural_net Record:

subcarrier_path
visibility_bit
structural_connection
instantiate_an er
extends

structural
net

Figure B.18: structurai_net Record.

Record Definition: The structural_net record binds together carriers of

two different component.

Attribute Definitions:
a. sybcarrier_path is a record number for a lower levei single carrier record
which describes the decomposition of the parent to the structural_net record.
Syntax: positive integer or NULL.
Occurs: at most once.
Default: NULL.

. b visibility_bit is a flag stating whether or not the structurai_net can be
accessed.
B.44

SNy

-
-

.o

v y T n g g g

v T e Tl
S).‘ ]

AL 11 '

n P e N REL DS I 4
AR

hJ l\ l’.

A AN




Syntax: true or false.
Occurs: at most once.
Default: true.

c. structural_connection contains a record number for a record which
describes the structural connections for the structural network.

Syntax: positive integer or NULL.
Occurs: at most once.
Default: NULL.

d. instantiate_and_merge is a record number for the logical top of a
previously printed DAG (i.e., a group of related records). The current record
needs a unique copy of that DAG in order to complete the DAG associated with
the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

e. extends is a record number for a previously printed record. Any record
which contains an extends attribute is a continuation record. The information
listed in such a record actually belongs to the record referenced by the
extends attribute.

Syntax: positive integer or NULL.

Occurs. at most once.

Default: NULL.

- : *
ere
'\‘. -
AP AR AR A S TRy A R S O A A R A O Y S o S R N A AN A St e e W S
O A s Oy Pl } . f_mﬁi_h M ".'.'. ALY X _sts{l;ts.'ﬁs R AU



% 17. structural_pin Record:

subcarrier_path
single_module

instantiate_and_merge

extends

structural
pin

Figure B.19: structural_pin Record.

Record Definition: The structural_pin record binds together a carrier and a

single_module of the same component.

Attribute Definitions:

a. subcarrier_path is a record number for the single_carrier associated
with the single_module.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: MNULL.

single_module contains a record number for a single_module record

Syntax: positive integer or NULL




- - - ™

-

-

Occurs. zero or more times.
Default: NULL.

c. instantiate_and_merge is a record numoer for the logical top of a
previously printed DAG (i.e., a group of related records). The current record
needs a unique copy of that DAG in order to complete the DAG associated with
the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

d. extends is arecord number for a previously printed record. Any record
which contains an extends attribute is a continuation record. The information
listed in such a record actually belongs to the record referenced by the
extends attribute.

Syntax:. positive integer or NULL.

Occurs: at most once.

Default. NULL.

B 47

................................

.
.
* a e AERLS A B S S

X S8 &




% 18. timing_link Record: N
name X
complete_bit
instantiate_and_merge

o extends :
timing 4
link '

:

Figure B.20: Timing_link Record.

Record Definition: The timing_link record characterizes the shared point

- - o v o » - =

(i.e, an instance of time) dependencies between points of two different

components. Essentially, the timing_link is a binding.

Attribute Definitions:

3. name is the name of the timing_link.
Syntax. any valid VHDL identifier :
Occurs: at most once. '
Default: NULL.

S
¢
b. complete_bit indicates whether or not the description of the p

,{:ﬁ‘.\. timing_link is complete. The complete_bit attribute will appear in the
) J" :
B.48 v

TR

-. - ? ...'- o 4.‘:, a ...:* " S '_._; ATy ,.:_. -,,(\-_. A B -'.' B A N e e e A A A T .,-.., IR -.\";_\__\__\;‘\-._\'

Yy



W R Y YO W O T R T R T YO N T PR R T T R R T I PO e PO TeE

@ timing_link record when the description is not complete. Otherwise, the
description is assumed to be complete.
Syntax: true or false. 4
Occurs: at most once.
Default. true.

- w . a. A

c. instantiate.and_merge is a record number for the logical top of a
previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with
the current record.

ol Bl ol T

Syntax: positive integer or NULL.
Occurs: at most once.
Default: NULL.

d. extends is a record number for a previously printed record. Any record
which contains an extends attribute is a continuation record. The information
listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.
Default. NULL.

B.49

LA BT A S U A I AL A S A
S e R PO A R R A

APV ICPE AT FETUE AT JU JU SRR SRR I L U R S




B

©

19. timing_model Record:

name

complete_bit

duration

causality

timing has_structural_dimension
model has_link_constituent
has_model_constituent
finstanti nd_mer
extends

Figure B.21: Timing_mode} Record.

Record Definition: The timing.model record is one of three subspace
records,; it characterizes the timing and sequencing dependencies of a
component. The timing_model has two types of attributes which are
explained at a lower level in the hierarchy: ranges and points. A range
represents the time duration over which a functional transformation occurs,

while a point is a specific time which an event will occur.

Attribute Definitions:
a. name is the name of the timing_mode!.
Syntax: any valid VHOL identifier.

Occurs: at most once.
Default: NULL.

sllcaNNN SN,




@ b. complete_bit indicates whether or not the description of the
timing_model is complete. The complete_bit attribute will appear in the
timing_model record when the description is not complete. Otherwise, the
description is assumed to be complete.

oyntax: true or false.
Occurs: at most once.

Default. true.

C. duration indicates the iength of the time interval. J
Syntax: integer.
Occurs: at most once.
Default: 0.

é d  causality indicates what caused the timing model record to be created.
Syntax. character string or NULL.
Occurs. at most once.
Default: NULL.

e. bhas.structyral_dimension is an inteqer indicating the size of the
timing_model.

Syntax: positive integer.

L v

Occurs. at most once.
Default. 0.

f.  has_link_constituent contains a record number for a record which
¥, describes the single_points which make up the timing_model.

B.SI

WA ST N LIPS | AR A RS CEA A DA S TR L L ot AT A Y Pt
o 3 A N A S TR e A R S S S S S N i O AP A N AT YA, 75 I P WA



@ Syntax: positive integer or NULL.
Occurs: at most once.
Default. NULL.

-

P

9. has.model_constituents contains a record number for a single_range
record which is part of a timing_model.

Syntax: positive integer or NULL.

Occurs: zero or more times.
Default: NULL.

h. instantiate_and_merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record
needs a unique copy of that DAG in order to complete the DAG associated with
| 6 the current record.

Syntax: positive integer or NULL.
Occurs: at most once.
Default: NULL.

i. extends is arecord number for a previously printed record. Any record
which contains an extends attribute is a continuation record. The information
listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.
Occurs. at most once.
Default. NULL.

.

2

LAy
\ .‘

FRCR




&

-
“w

A5
L]
A\

20. undefined Record:

name

type

where_used
came_from_type
came_from_name
find_in_type
find_in_name

undefined

Figure B.22 : Undefined Record.

Record Definition: The undefined record specifies information related to
any VHDL identifier which was used in 2 VHDL source description but was not

defined in that description.

Attribute Definitions:

3. name an undefined VHDL identifier.
Syntax: any valid VHDL identifier or constant.
Occurs: at most once.
Default: NULL.

b. type specifiec how the identifier was used.

Syntax: signal, variable, function, procedure, architecture, package,

B.53

B A T et A AN T AT e T AT s A e et s e ey """ R A
EN NS R TR . PO A A DA N
AT SASEH LH A SR LR IO A SN R LSRR LG UL R ANON, AN RN



@ configuration, interface, port, or parameter.
Occurs: at most once.
Default: no default.

¢. where_used specifies the record number for the VIA record which used
! the identifier.
Syntax; positive integer

Occurs. at most once.

’ Default: no default.

d.  came_from_type specifies the VHDL construct in which the identifier
was used.

Syntax:. architecture, package, interface, function, procedure, or

ﬁ configuration.
' Occurs: at most once.

Default. no default.

e. came_from_name specifies the name of the VHDL construct which used
the undefined identifier. _‘

- e - - -

Syntax: any valid VHDL identifier.
Occurs: at most once. '
Default. NULL. '

' f. find.in_type specifies the VHDL construct in which the identifier was
expected to be found.

Syntax. package, interface, confiquration, or unknown.

— - - - -

B.54

D A AN AN



- R - heaee Jhad 2 aadhnd A d Sae ol Aok B Ao ) R B il o

@ Occurs: at most once.

Default: unknown.

q. find_in_name the name of the VHDL construct which should define the
undefined identifier (if known).

Syntax. any valid VHDL identifier.

Occurs. at most once.

Default. NULL.

21. yiatable Record:

component

6 package
i | undefined
root

viatable

Figure B23 : Viatahle Record

Record Definition: The viatable record is the control record for the entire

VIA file (see previous discussion on the viatable structure 1n this appendix.)

",
P\ J\-

.‘: (:,'

B.55




& Attribute Definitions:
a. component is the record number for a record which specifies a
component record.
Syntax: positive integer or NULL.
Occurs: zero or more times.
Default: NULL.

b. package is the record number for a record which specifies a package
record.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

6 ¢c. undefined is the record number for a record which specifies a undefined
record.

Syntax: positive integer or NULL.

Occurs: zero or more times.
Default. NULL.

B.56

“
o S W, o VW e et OPE R FCATAD N AT SO A A A A j
SIS A 56 A SRR, TS O05C5 48 08 L 06 0506 )




Appendix C: Example Test Data .

This appendix provides a representative set of test cases which where
used to verify the language analyzer's function. Each test case followed the
general procedures described in Chapter S. The specific test cases varied
with respect to input and output data. Therefore, only VHDL source code,
enhanced DDS, and VIA records are depicted for each test case. The VHDL
source code shows the l1anguage statements which were analyzed. The
enhanced DDS depicts the directed acyclic graphs produced from the VHDL
statements. The VIA records represent the enhanced DDS. Because of the
repetitive nature of the test cases, a discussion of each test case procedure
is not provided. The interested reader is referred to the discussion presented
in Chapter S.

C1




Test Case ).

entily INTERFACE_NAME /s
end

enhanced DDS:

component:

viatable

name: INTERFACE NAME

\ complete bit: true
ﬁ component | gperation bindings: 'rlzun
| dataflow model: nu
|-timing model: nyll
 structyral model: nyll

v

Figure C.1: Test Case |.

VIA Representation:

} 0 viatable ( component = | ;)
I component ( name = INTERFACE_NAME ; )

C.2

QA0SR NI AR NN KA



Test Case 2. - v

- \
B vl source Cote ’
package PACKAGE_NAME /s <
proceaure A_PROCEDURE_NAME /s |
begin E
nuill;
éend
end ;
r]
5
vistable '
¢
Le
¢
v
name: PACKAGE_NAME .
peckage  |omeocnent: . >
:j'.
ﬁ | name: A_PROCEDURE_NAME -
- complete_bit: false :
operation_binding: NULL N
[ dataflow_modei: NULL N
component I Tiring model: NULL N
structural_model: NULL

instanUale_and_merge: NOLL
extends: NULL R
3
Fiqure C.2. Test Case 2. 9
VIA Representation: 3
2
0 viatable ( package = 1 ;) "
| package ( name = PACKAGE_NAME ; component = 2 ;) A

2 component ( name = A_PROCEDURE_NAME ; complete_bit = faise ;)
X
.
7

C.3 "




~-

&

e
u‘.:"

’

Test Case 3.

proceaure PROCEDURE_NAME /s
begin
null;
end;
enhanced DDS:
vislable
neme: PROCEDURE_NAME |
compiete_bit. false
operation_binding: NULL
dataflow_mode): NULL
component I fiming_model: NULL
structursi_model: NULL
[nstanliate_snd_merge: ROLL
extends: NULL
Figure C.3. Test Case 3.
VIA Representation:

0 viatable ( component = 1 ;)
| component ( name = PROCEDURE_NAME ; complete_bit = false ;)

Test Case 4.
YHDL Source Code:

/Uﬂc‘t;?ﬁ FUNCTION_NAME refurn A_TYPE_MARK /s
gin

end,

null

-

C4

..........

Y
:\1
C A, o vIu---\\.\‘..'..~.'.-\\‘.\-,\\-‘....‘~\
TR AR DAL G5 LS ELATAS L, QL DL DR Y 08 RARY L%, 06 S0 R AR NN N0



VIA Representation:
0 viatable ( component = 1 ;

Tesl Case 5.
VHDL Source Code:

begin
process
begin

énd block,

44'~)v
) :‘.,"5
component =
T ;
rool: NOLL
name: FUNCTION_NAME
| complete_bit: feise
operstion_binding: NULL
delaflow_model: NULL
component I rming_model: NULL
structural_model: NULL
inslantiale_and_merge: NOLL
extends: NULL
complete_bit: faise
datafl hes_structural_dimension: 0
ow has_sublink_constituent: NULL
link ~ :
SRUNGS T NOCL
e thure C.4 Test Case 4.

)

| component ( name = FUNCTION_NAME complete_bit = false ;)
2 dataflow_link ( name = A_TYPE_MARK complete_bit = false )

architecture ARCHITECTURE_NAME
of INTERFACE_NAME /s
A_BLOCK_LABEL: do/ock

TlUA

end process;

C.5

fff-'

oA YRRLHALY .) A\_.\_n ni‘f. 'h:"

1
v

-L.LL COWER. .



| name: INTERF ACE_NAME

ation_b ;. NULL
dataflow_model: NULL

component F — ———

Liming_model: NULL
structursl_model:

instantiate_snd_merge: NULL
oxtends: NULL

structursl | hes_structursi_dimension: 0
modal hes_link_constituent: NULL

VIA Representation:

I component ( name = INTE
= false ;)
2 structural_model ( name

Test Case 6.

| YHDL Source Code:

0 viatable ( component = | ;)
RF ACE_NAME ; structural_model = 2 ; complete_bit

Figure C.5: Test Case S.

= ARCHITECTURAL_NAME ; complete_bit = false ;)

consigquration CONFIGURATION_NAME
o/ INTERF ACE_NAME

for ARCHITECTURE_NAME /s

‘ nd ;




9% %

enhanced DDS:
vislable
Ry
)
RS
)
>
‘ﬂ"
. &)
- strocturdl | bes Strectrel dovession: 0 w
‘ mode)  |'hes lisk constituwel; MAL -
| hes_model_constituent: MULL
instantiate_snd_merge: NULL
extends: NULL
4
v
Figure C.6: Test Case 6. Y
VIA Representation: 3
-‘
0 viatable ( component = 1 ; component = 2 ; ) .
| component ( name = CONFIGURATION_NAME ) ¥
2 }:o'mpon)ent ( name = INTERFACE_NAME ; structural_model = 3 ; complete_bit
= false ;

3 structural_model ( name = ARCHITECTURE_NAME ; complete_bit = false ;)

N

\’

0 *
& o "

c.7 ~




Bibliography

>

Afsarmanesh, Hamideh and others. An Extensible Object-Oriented Approach to

Databases for VLSI/CAD, Technical Report CRI-85-09, 7 October 1985. Y
Contract F49620-81-C-0070. Department of Electrical "
Engineering-Systems, University of Southern California, Los Angeles CA, ¥
23 April 198S.

Air Force Wright Aeronautical Laboratories (AFWAL). VHSIC Hardware
Description Language (VHDL) Standardization Effort. Letter attachment.
12 February 86.

.‘.k.‘.-

Arnold, Michael. "LYRA(CAD)", UNIX Programmer's Manual, Computer Science
Division, Department of Electrical Engineering and Computer Science,

University of California, Berkeley CA, 20 January 1986.

AT&T Information Systems. The UNIX System User's Manual. Englewood
Cliffs: Prentice-Hall, 1986.

Aylor, J. H, R. Waxman, and C. Scarratt. "VHDL -- Feature Description and
Analysis,” |EEE Design and Test of Comouters, 3: 17-27 (April 1986).

CAD Language Systems,inc., VHDL Language Reference Manual, IEEE

Preliminary Version. Rockville: CAD Language Systems,Inc., 28 June ;"
1986. -
e’

Carter, Lt Col Harold W. Lecture materials distributed in VHDL meeting.
School of Electrical and Computer Engineering, Air Force Institute of
Technology (AU), wright-Patterson AFB OH, November 1985.

Dewey, Capt Allen and ILt Anthony Gadient. "VHDL Motivation,” |FFF Design
and Test of Computers, J: 12-16 (April 1986).

Drew, Daniel. Lecture materials distributed in Programming Languages.
Department of Industrial Engineering, Texas A&M University, College
',':W Station TX, 1981.




Al 8 23 3 W WL T
BN ITTPW T W b o b - T O TR, FEN TV 3 VUL TSI TV A TR igyrnen Wi X TR Ry o LAt ad

Fairley, Richard E. Software Engineering Concepts. New York: McGraw-Hill,
Inc., 1985S.

Fitzpatrick, Dan. "MEXTRA(CAD)", UNIX Programmer's Manual, Computer
Science Division, Department of Electrical Engineering and Computer

Sclence, University of California, Berkeley CA, 28 February 1983.

George, Capt Bruce. Discussion. School of Electrical and Computer

Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, August 1986.

Intermetrics, Inc. VHDL Analyzer Program Specification. Contract
F33615-83-C-1003. Bethesda MD, 30 April 1986.

----. YHDL Language Reference Manual Version 7.2, Contract
F33615-83-C-1003. Bethesda MD, | August 198S.

----. VHDL User's Manual Volume | -~ Tutorial Contract F33615-83-C-1003.
é Bethesda MD, 1 August 1985.

----. YHDL User's Manyal Volyme || -- User's Reference Guide. Contract
F33615-83-C-1003. Bethesda MD, | August 1985.

Johnson, Stephen C. Yacc: Yet Another Compiler-Compiler. Murray Hill: Bell
Laboratories, 31 July 1978.

Katzenelson, Jacob and Eliezer Weitz. “VLSI Simulation and Data
Abstractions,” |EEE Transactions on Computer-Aided Design, CAD-S:
371-378 (July 1986).

Knapp, David W. and Alice C. Parker. A Data Structure for VLS| Synthesis and
Verification. Contract DAAG29-80-k-0083. Department of Electrical

Engineering-Systems, University of Southern California, Los Angeles CA,
8 May 1984.

B8iB.2




TN

Kulp, P. Private communication. School of Electrical and Computer
@ Engineering, Air Force Institute of Technology (AU), Wright-Patterson
‘ AFB OH, 10 April 1986.

[t l ot

-
™

Lesk, M. E. and E. Schmidt. Lex - A Lexical Analyzer Generator. Murray Hill:
Bell Laboratories, 31 July 1978.

,\o__u-‘_._f‘.y

Linderman, Capt Richard. Discussion. School of Electrical and Computer i
Engineering, Air Force Institute of Technology (AU), Wright-Patterson ‘

AFB OH, August 1986. "

Ousterhout, John. Editing VLSI Circuits with Caesar. Computer Science

Division, Electrical Engineering and Computer Sciences, University of 3
California, Berkeley CA, 22 March 1983. P

Texas Instruments, inc., Design Utility Systems. YHDL Design Library by
; Specification. Contract F33615-83-C-1003. Texas Instruments, Inc., 3
| Dallas TX, 30 July 1984 :
| 6 Schreiner, A. V., and H. G. Friedman, Jr. |ntroduction to Compiler Construction
with UNIX. Englewood Cliffs: Prentice-Hall, Inc., 198S.

Viadimirescu, A., and others. SPICE User's Gyide. Computer Science Division,
Department of Electrical Engineering and Computer Sciences, University
of California, Berkeley CA, 1 October 1983.

S HBAANSS MY

Waxman, Ron. “Hardware Design Languages for Computer Design and Test,”
Computer, 19: 90-97 (April 1986).

BIB.3




VITA

Deborah J. Frauenfelder was born on 2 June 1953 in Manhattan,

Kansas. She graduated from West Denver High School in 1971 and
enlisted in the Air Force in June 1977. While stationed with the 2851
ABG, Kelly AFB, Texas, she was selected for the Airmen Education and
Commissioning Program, and subsequently, transferred to Texas A&M
University, College Station, Texas, to complete a Bachelor of Science
Degree in Computing Science. After receiving her commission through
Officer Training School in August 1982, she was assigned to
Headquarters, United States Air Force in Europe, Ramstein AFR, Germany,
where she designed software to support intelligence mission
requirements. Upon leaving Germany, she was assigned to the Air Force

] Institute of Technology, School of Engineering at Wright-Patterson AFB,

6 Ohio in May of 1985.

Permanent address: 4740 Dapple Gray Lane
Colorado Springs, CO 80914




Unclassified 4 / 7/? @% g

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

T6. RESTRICTIVE MARKINGS
URITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) * S. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/GCE/MA/86D-1
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMD;)L 7a. NAME OF MONITORING. QRGANIZATION - - IEERNTENS
School of Engineering Aﬁq mg' :
[6c ADORESS (City, State, and 2P Code) 7b. ADDRESS (City, State, oo = .
E. WOLAVER M &)
Air Force Institute of Technology Decn for Kesearcn and Professional Dueel
Wright-Patterson AFB, Ohio 45433 e Loattute ot Techaelogy (ARG}
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION A{r Force (If applicable)
Wright Aeronautical Labs AFWAL/AADE
8c ADDRESS (City, State, and 2iP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
wright-Patterson AFB, Ohio 45433 ELEMENT NO. I NO. NO ACCESSION NO.
e o
1. TITLE (include Security Classification)
1 An I(mpleme;x”gation‘ of a language Analyzer for the Very High Speed Integrated
Circuit Hardware Description Language

gl 12, PERSONAL AUTHOR(S)
Deborah J. Frauenfelder, B.S.C.S., Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |1S. PAGE COUNT
MS Thesis FROM 10 1986 December 172
16. SUPPLEMENTARY NOTATION - tklar M) '7
an for Feserz ch und Dilessional Development

17. COSATI CODES 18. SUBJECT TERMS (Comlqw on reverse if necefibiyhahuhicontiyOP mber)
[ &0 GROUP SUB-GROUP VHDL Compiler
I oo 02 HDL .Hardware Description Language

VIA DDS -

A [P oTearetmesrs mmmw used to develop the first known
C-based, UNIX- ed translator/analyzer for the Very High Speed Integrated Circuit

(VHSIC) Hardware iption Language ( ). This rese consisted of defining a
VHOL Intermediate Access (VIA) format as a translation target, dividing VHDL into

m able segments, describing VHOL-to-VIA relationships, d'esig'tlng software
modules to create those relationships, and evaluating the functiona! and performance
characteristics of the analyzer. The intermediate form, VIA, was based upon the Design
Data Structure (DDS) developed by Alice Parker and David Knapp.

Three of the nine VHDL 1anguage subsets {dentified were implemented in the
langua?e analyzer. In increments, these subsets were manually.transiated into sgeclf ic
examples of an enhanced version of DDS represented in a pile file format (VIA). These
examples were then used as specifications for desiring program modules to
automatically translate VHDL code into VIA. After the program modules were written,
these same examples were used as formal functiona) test specificatiohs. -

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
T uncLassiieorunumited [ same As RPT.  [J DTIC USERS Unclassified .
228. NAME OF RESPONSIBLE INDIVIDUAL 220 TELEPHONE (Wnclude Ares Code) | 22¢ OFFICE SYMBOL A
~ Richard R. Gross, Lt Col, USAF 55132 255-3098 AFIT/ENC .
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

™ RVAFRT S S IS S 3 ATS 1N TR L AT A
RN X AN NN A NN NN






